::p_load(tmap, sf, tidyverse, sfdep, knitr, Hmisc, mapview, DT, sp, stplanr, reshape2, skimr, performance, plotly, httr, corrplot, gifski, patchwork) pacman
Take-home 2 - Applied Spatial Interaction Models: A case study of Singapore public bus commuter flows
1 Overview
Understanding why city residents wake up early to travel from home to work and assessing the consequences of discontinuing a public bus service along a specific route are key challenges faced by transport operators and urban managers in the realm of urban mobility. Traditionally, answering such questions relied on expensive, time-consuming commuter surveys. However, these surveys not only demanded considerable resources but also yielded data that took a substantial amount of time to clean and analyze, often rendering it outdated by the time reports were ready.
In today’s digital era, urban infrastructures, including public buses and mass rapid transits, are becoming increasingly digital. The proliferation of technologies like GPS on vehicles and SMART cards for public transport users generates vast geospatial data sets, offering insights into movement patterns over time and space. Despite this wealth of data, planners struggle to effectively leverage and transform it into valuable information, impacting the return on investment in data collection and management.
To address this gap, this exercise conducts a case study showcasing the potential of Geographic Information System and Spatial Data Analysis (GDSA). By integrating data from various sources, this approach aims to build spatial interaction models that unveil the factors influencing urban mobility patterns in the context of public bus transit.
This task aims to achieve specific goals, focusing on General Geospatial Data Science and Spatial Interaction Modeling.
For the General Geospatial Data Science, the aim is to do the following: - Create a detailed hexagon map (375m distance from center to edges) representing Traffic Analysis Zones (TAZ). - Various time will have different pattern of traffic flow. For this study, the focus is on the period of weekday morning peak from 6am to 9am. - Develop an Origin-Destination (O-D) matrix illustrating commuter flows during the chosen time interval. - Visualize passenger trip flows using geospatial methods, analyzing the observed spatial patterns. - Gather relevant data, both spatial and aspatial, from publicly available sources. - Generate a distance matrix based on the earlier derived hexagon data.
Studies have found that people are usually willing to walk approximately 750 meters to get to public transportation. A more specific comfortable walking distance that takes into account the local weather and how cities are laid out.
When planning city maps and deciding where to place public transport stops, we use hexagons to represent areas on the map. Why hexagons? They fit together perfectly without wasting any space, which makes them great for dividing the map into zones. To match the 750-meter walking distance, each hexagon is sized so that the distance from the center to any edge is half that distance, which is 375 meters. This ensures that anyone within the hexagon is no more than a 750-meter walk away from the center, where a public transport stop would be ideally located. This method is a smart way to make sure that everyone has easy access to transport within a reasonable walking distance.
summarized from: Daniels & Mulley, Dhuri, Sekste & Kazakov, and in-class explanation from Prof Kam Tin Seong
A Traffic Analysis Zone (TAZ) is a way of dividing a city into smaller areas for transportation planning. Each TAZ has some information about the people and places in it, such as how many people live there, how many cars they have, and where they work or go to school. These information help planners understand how people travel and what kind of transportation they need.
Some key points about TAZs are:
The size and shape of a TAZ can vary depending on the location and the purpose of the study. For example, a TAZ in a downtown area might be smaller and more regular than a TAZ in a rural area.
The choice of a TAZ system is very important because it affects the accuracy and usefulness of the transportation models. A good TAZ system should reflect the reality of the travel patterns and demands in the city.
AZs are not fixed and can be changed or updated over time to reflect new data or changes in the city. However, changing TAZs can also cause some problems, such as losing historical data or making comparisons difficult.
Summarized from: Miller, 2021
An Origin-Destination (O-D) matrix is a way of showing how many trips are made from one place to another in a given area. For example, an O-D matrix can tell us how many people travel from their home to their work, or from their hotel to a tourist attraction, or from one city to another. An O-D matrix can help us understand the travel patterns and demands of people, and plan for better transportation systems.
An O-D matrix usually looks like a table, where the rows represent the origins (where the trips start) and the columns represent the destinations (where the trips end). Each cell in the table shows the number of trips between a specific origin and destination. Sometimes, the table can also include other information, such as the mode of transportation (car, bus, bike, etc.), the time of the day, or the purpose of the trip.
Here is an example of a simple O-D matrix for a city with four zones (A, B, C, and D):
A | B | C | D | Total | |
---|---|---|---|---|---|
A | 0 | 10 | 5 | 15 | 30 |
B | 20 | 0 | 10 | 10 | 40 |
C | 10 | 15 | 0 | 5 | 30 |
D | 5 | 5 | 5 | 0 | 15 |
Total | 35 | 30 | 20 | 30 | 115 |
This table tells us that there are 115 trips in total in the city, and that the most common origin-destination pair is A-D, with 15 trips. It also tells us that no one travels within the same zone (the diagonal cells are zero).
An O-D matrix can be created from different sources of data, such as surveys, GPS, mobile phones, or social media. Depending on the data source, the level of detail and accuracy of the O-D matrix can vary. For example, a survey might ask people to report their exact home and work locations, while a GPS device might only record the coordinates of the start and end points of a trip. Therefore, different methods and techniques are needed to process and analyze the data, and to convert them into a meaningful O-D matrix.
Summarized From: Coşkun, et al., 2020
Trip flows are the movements of people or things from one place to another in a given area. For example, trip flows can show how many people travel from their home to their work, or from one city to another, or from one country to another. Trip flows can help us understand the patterns and reasons of these movements, and how they affect the environment, the economy, and the society.
Summarized from: Tao Ran, 2021
Spatial data is data that has a geographic or spatial component, meaning that it is related to a specific location on the Earth’s surface. For example, the coordinates of a city, the shape of a lake, or the population density of a region are all spatial data. Spatial data can be represented using maps, graphs, or statistics, and can be analyzed using Geographic Information Systems (GIS).
Aspatial data is data that does not have a direct connection to a specific location. For example, the name of a person, the color of a car, or the price of a product are all aspatial data. Aspatial data can be represented using tables, charts, or text, and can be analyzed using various methods such as arithmetic, logic, or statistics.
The main difference between spatial and aspatial data is that spatial data can show the spatial relationships and patterns of the data, such as distance, direction, or proximity, while aspatial data cannot. Spatial data can also be combined with aspatial data to provide more information and insights. For example, a map of a city can show both the spatial data (the location and shape of the buildings) and the aspatial data (the name and use of the buildings).
Summarized from: Cengel
A distance matrix is a way of showing how far away different places are from each other in a given area. For example, a distance matrix can tell us how many kilometers or minutes it takes to travel from one city to another by car, bus, or bike. Applying geospatial analytics on distance matrix can help us understand the patterns and reasons of these movements, and how they affect the environment, the economy, and the society. dive deeper at (ArcGIS)[https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/distance-analysis.htm]
For the General Spatial Interaction Model, the aim is to do the following:
Adjust spatial interaction models to identify factors influencing urban commuting during the specified time.
Present modeling results using suitable geovisualization and graphical methods.
Interpret the outcomes to gain insights into the factors impacting commuting flows in the urban landscape during the selected time frame.
A spatial interaction model is a way of describing how people or things move from one place to another in a given area. For example, a spatial interaction model can show how many people commute from their home to their work, or how many goods are traded between different cities or countries. A spatial interaction model can help us understand the patterns and reasons of these movements, and how they affect the environment, the economy, and the society.
One of the most common spatial interaction models is the gravity model, which is based on an analogy to the physical law of gravity. The gravity model assumes that the movement between two places is proportional to their size (such as population or income) and inversely proportional to their distance. The gravity model can be written as:
\[T_{ij} = k \frac{v_i^{\lambda} w_j^{\alpha}}{d_{ij}^{\beta}}\]
where \(T_{ij}\) is the movement from place \(i\) to place \(j\), \(v_i\) is the propulsiveness factor from the origin(\(i\)) place,\(w_j\) is the attractiveness factor from the destination (\(j\)), and \(d_{ij}\) is the distance between the two places. \(k\) is a constant model parameter, while \(\lambda\), \(\alpha\), and \(\beta\) are parameters that measures the effect of their respective variables.
There are other types of spatial interaction models, such as the potential model and retail model, which have different assumptions and formulations. These models can be used to explain different kinds of movements, such as migration, tourism, or disease spread.
References: Kam Tin Seong and Spatial interaction models with R
The spatial interaction models being used in this task are the variants of Gravity Model including Unconstrained, Origin Constrained, Destination Constrained, and Doubly Constraint. The models’ performance will be compared to see which one is more appropriate to use in the modelling.
The Unconstrained Gravity Model is a simple form of the gravity model where the principle of conservation is ignored. This means that the interaction between two locations is not limited by the total number of interactions at the origin or destination. In this model, the interaction between two locations is a constant scaling factor, independent of all origins and destinations.
The Origin/Production Constrained Gravity Model, also known as the production constrained model, includes origin-specific balancing factors that act as constraints. These constraints ensure that the estimated rows of the flow data matrix sum to the observed row totals. In other words, the total number of interactions originating from a location is fixed, and the model distributes these interactions across various destinations.
The Destination/Attraction Constrained Gravity Model, also known as the attraction constrained model, includes destination-specific balancing factors that act as constraints. These constraints ensure that the estimated columns of the flow data matrix sum to the observed column totals. This means that the total number of interactions attracted to a location is fixed, and the model distributes these interactions across various origins.
The Doubly Constrained Gravity Model includes both origin and destination-specific balancing factors that act as constraints. These constraints ensure that the estimated rows and columns of the flow data matrix sum to the observed row and column totals. In other words, both the total number of interactions originating from a location and attracted to a location are fixed.
To dive deeper on these models, explanation can be found on research by Haynes & Fotheringham, 1985 and class materials by Prof Kam Tin Seong
the content of the following panel explained what aspatial and geospatial data are used in this project.
October 2023 Period
downloaded from LTA DataMall - Dynamic Dataset via API
csv
format.Columns/Fields in the dataset includes YEAR_MONTH, DAY_TYPE, TIME_PER_HOUR, PT_TYPE, ORIGIN_PT_CODE, DESTINATION_PT_CODE, and TOTAL_TRIPS.
YEAR_MONTH: Represent year and Month in which the data is collected. Since it is a monthly data frame, only one unique value exist in each data frame.
DAY_TYPE: Represent type of the day which classified as weekdays or weekends/holidays.
TIME_PER_HOUR: Hour which the passenger trip is based on, in intervals from 0 to 23 hours.
PT_TYPE: Type of public transport, Since it is bus data sets, only one unique value exist in each data frame (i.e. bus)
ORIGIN_PT_CODE: ID of origin bus stop
DESTINATION_PT_CODE: ID of destination bus stop
TOTAL_TRIPS: Number of trips which represent passenger volumes
Click this link, and click the
Request for API Access
Fill in the required form
Check email for confirmation. The
API Account Key
will be required for later step.The user guide from LTA here will explains how to make API calls. The user guide also provide the link required for various kind of dataset, keep the link for future use.
The following step assume usage of desktop apps version of
Postman
to make the API call. Firstly, go to Postman and click on the logo of the OS system that you are using.The following step is for Windows User, adjust accordingly if you use other OS. Click on the dowload button, install the apps, and launch it.
In the apps, copy-paste the url from step 4, and make sure that the option is set to
GET
. In this case where the data is monthly, you need to add a parameter of the month data that you want to download in the format of YYYYMM (202308 shown in the example). The parameter is underParams
section.Next, go to
Headers
section and add AccountKey which value can be obtained from step 3. Click the blueSend
button.Click the link that will come out on the bottom of the apps, it will be opened in a new tab.
In this last step, click
Send and Download
in the new tab. You can choose where to put the data and the download will start.
The dataset contains comprehensive information about various Housing and Development Board (HDB) blocks situated in Singapore. The dataset not only includes details on the number and types of dwelling units but also crucially provides the geographic coordinates, specifically the longitudes and latitudes, corresponding to each HDB block. This geographical information opens the door to transforming the dataset into a spatial data frame, enabling us to treat the HDB block details as a spatial object. By leveraging these coordinates, we can engage in spatial analysis and visualization, gaining valuable insights into the spatial distribution and relationships among different HDB blocks across Singapore. This spatial perspective enhances the depth of understanding and opens avenues for exploring the geographical patterns inherent in the HDB block dataset. The original dataset can be downloaded from Singapore’s National Open Data Collection. However, the original dataset does not contain geoidentifier. The geoidentifier in the HDB dataset that is used here was provided by Prof Kam Tin Seong.
The School Directory and Information dataset, sourced from Singapore’s National Open Data Collection, provides valuable information pertinent to the morning period, notably involving students commuting to school. The dataset encompasses details about the locations, implicitly indicated by the ‘POSTAL_CODE’ field, of MOE kindergartens, primary schools, secondary schools, and junior colleges. Notably, it excludes information on the locations of ITEs, polytechnics, and universities. With a total of 346 records, this dataset serves as a comprehensive resource for understanding the geographical distribution of various educational institutions.
Geospatial data in shp
format are used in this project, as shown in the following panel:
provides information about all the bus stops currently being serviced by buses, including the bus stop code (identifier) and location coordinates.
downloaded from LTA DataMall - Static Dataset
Columns/Fields in the dataset includes BUS_STOP_N, BUS_ROOF_N, LOC_DESC, and geometry.
- BUS_STOP_N: The unique identifier for each bus stop.
- BUS_ROOF_N: The identifier for the bus route or roof associated with the bus stop.
- LOC_DESC: Location description providing additional information about the bus stop’s surroundings.
- geometry: The spatial information representing the location of each bus stop as a point in the SVY21 projected coordinate reference system.
Provides information about the sub-zone boundary of Urban Redevelopment Authority (URA) Master Plan 2019 (MPSZ-2019).
The original dataset can be downloaded from Singapore’s National Open Data Collection. However, the original dataset have a different file type from the one that is used in this project. The changed file type of the data was provided by Prof Kam Tin Seong.
Columns/Fields in the dataset includes SUBZONE_N, SUBZONE_C, PLN_AREA_N, PLN_AREA_C, REGION_N, REGION_C, and geometry
While the analysis primarily focuses on hexagon cells, incorporating the Master Planning Sub-Zone 2019 file enables the integration of additional point layers like Retail and Leisure onto the Singapore map. This integration facilitates the visualization of their respective locations within various planning sub-zones across Singapore.
- SUBZONE_N: The unique name for each subzone boundary.
- SUBZONE_C: The unique identifier for each subzone boundary.
- PLN_AREA_N: The unique name for each planning area.
- PLN_AREA_C: The unique identifier for each planning area
- REGION_N: The unique name for each region.
- REGION_C: The unique identifier for each region.
- geometry: The spatial information representing the location of each subzone boundary in Coordinate Reference System (CRS) from World Geodetic Systems (WGS) 84.
A hexagon layer of 375m (perpendicular distance between the centre of the hexagon and its edges.) Each spatial unit is regular in shape and finer than the Master Plan 2019 Planning Sub-zone GIS data set of URA.
Uniform Distances Everywhere: Think of hexagons as honeycomb cells. Each cell (hexagon) touches its neighbors at the same distance from its center. It’s like standing in the middle of a room and being the same distance from every wall, making it easier to measure and compare things.
Outlier-Free Shape: Hexagons are like well-rounded polygons without any pointy tips. Sharp corners can create odd spots in data, but hexagons smoothly cover space without sticking out anywhere. This helps prevent weird data spikes that don’t fit the pattern.
Consistent Spatial Relationships: Imagine a beehive where every hexagon is surrounded by others in the same pattern. This regular pattern is great for analyzing data because you can expect the same relationships everywhere, making the data predictable and easier to work with.
Ideal for Non-Perpendicular Features: Real-world features like rivers and roads twist and turn. Squares can be awkward for mapping these, but hexagons, which are more circular, can follow their flow better. This way, a hexagon-based map can mimic the real world more closely than a checkerboard of squares.
Summarized from: Dhuri, and Sekste & Kazakov.
The following dataset will support as propulsive/attractive factors for the modelling. The data was provided by Prof Kam Tin Seong. The data includes:
Business: provide information about business locations across Singapore
Rapid Transit System Station: encompasses the geographical positions of Mass Rapid Transit (MRT) and Light Rail Transit (LRT) stations in Singapore, represented as polygon shapes.
Train Station Exit Layer: includes exit points for all MRT and LRT stations in Singapore, stored as individual points.
Entertainment: highlights the locations of entertainment venues in Singapore, such as cinemas and theaters, presented as points.
Food & Beverage: captures the locations of Food & Beverage venues in Singapore, such as restaurants and cafes, organized as points.
Financial Services: showcases the locations of Financial Services in Singapore, encompassing ATMs, money changers, and banks, stored as individual points.
Leisure & Recreation: denotes the locations of Leisure and Recreation venues in Singapore, spanning sports venues, museums, and galleries, organized as points.
Retails: documents the locations of Retail venues in Singapore, encompassing all shops that may not fit into other categories, presented as points.
2 Preparation
Before starting with the analysis, we have to load the library and import the data. This section also contains minor checking and setup of the data.
2.1 Import Library
The following code chunk utilizing pacman will import the required library (and install it if it does not exist in the environment yet).
tmap: Used for creating thematic maps in R, both static and interactive, with extensive mapping capabilities.
sf: Handles and manipulates geospatial data, enabling operations like reading, writing, transforming, and visualizing spatial data.
tidyverse: A suite of R packages designed for data science tasks, including data manipulation, exploration, and visualization.
sfdep: This package provides methods for measuring and diagnosing spatial dependence in linear regression models, particularly when working with spatial econometrics. It is tailored to work with ‘sf’ objects, which are used to handle spatial data in R.
knitr: Allows for dynamic report generation with R, making it easy to integrate R code into reports and weave together narrative text and code output.
Hmisc: Contains many functions useful for data analysis, high-level graphics, utility operations, and functions for dealing with missing values.
mapview: Facilitates the interactive viewing of spatial data in R, built on top of Leaflet.js.
DT: Provides an R interface to the JavaScript library DataTables, useful for creating interactive tables in R markdown documents and Shiny apps.
sp: Provides classes and methods for spatial data, and has been superseded by
sf
but is still widely used for compatibility reasons.stplanr: Offers sustainable transport planning tools for spatial lines, networks, and movement data.
reshape2: An R package that allows you to flexibly reshape data, such as melting and casting data frames.
skimr: Summarizes data in a frictionless way and produces a report with useful summary statistics.
performance: Assesses the quality and performance of statistical models, including checks for assumptions.
plotly: An R package that creates interactive web graphics using the plotly.js library.
httr: Simplifies the process of working with HTTP requests, such as API calls.
gifski: Converts images, plots, or animations into high-quality GIFs using the gifski library.
2.2 Data Import and Minor Wrangling
This section will import the required aspatial and geospatial dataset. The process also involves minor data change like setting the correct reference system, and removing duplicates before going to more complex data wrangling in the next section.
Geospatial
the following panel will show how each geospatial dataset is imported, modify the CRS Code to 3414 to standardize, check on the data in general, check for duplicates, and display how the data looks like in Singapore map.
A Coordinate Reference System (CRS) Code is a standardized method for locating and describing positions on the Earth’s surface. It helps define how geographic data is represented in maps and digital systems.
The CRS code 3414 specifically refers to the coordinate reference system used for geospatial data in Singapore. It’s a unique identifier assigned to this specific system, allowing geographers and mapping software to accurately interpret and display location-based information for Singapore.
the following code will import the masterplan subzone 2019 dataset and assign the correct coordinate reference.
Code
# Read spatial data for MPSZ-2019 and transform CRS
<- st_read(dsn='../data/geospatial', # Specify data source directory
mpsz layer='MPSZ-2019') %>% # Specify layer to read
st_transform(crs=3414) # Transform CRS to 3414
Reading layer `MPSZ-2019' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 332 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 103.6057 ymin: 1.158699 xmax: 104.0885 ymax: 1.470775
Geodetic CRS: WGS 84
- st_read from sf package imports spatial vector data into R. It specifies the data source (
dsn
) and layer (layer
). Here, it reads the ‘MPSZ-2019’ layer from the specified directory. - st_transform from sf package transforms the coordinate reference system (CRS) of spatial data. In this case, it transforms the CRS of
mpsz
to 3414.
using glimpse, we can see the structure of the data
Code
# View the structure and contents of the mpsz data frame
glimpse(mpsz)
Rows: 332
Columns: 7
$ SUBZONE_N <chr> "MARINA EAST", "INSTITUTION HILL", "ROBERTSON QUAY", "JURON…
$ SUBZONE_C <chr> "MESZ01", "RVSZ05", "SRSZ01", "WISZ01", "MUSZ02", "MPSZ05",…
$ PLN_AREA_N <chr> "MARINA EAST", "RIVER VALLEY", "SINGAPORE RIVER", "WESTERN …
$ PLN_AREA_C <chr> "ME", "RV", "SR", "WI", "MU", "MP", "WI", "WI", "SI", "SI",…
$ REGION_N <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "WEST…
$ REGION_C <chr> "CR", "CR", "CR", "WR", "CR", "CR", "WR", "WR", "CR", "CR",…
$ geometry <MULTIPOLYGON [m]> MULTIPOLYGON (((33222.98 29..., MULTIPOLYGON (…
glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
next, check for possible duplicates using this code.
Code
# check for duplicates based on unique id
if_else(n_distinct(mpsz$SUBZONE_N) == nrow(mpsz), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. In this code, it’s used to count the unique values in
mpsz$SUBZONE_N
. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
mpsz
. - if_else from dplyr package performs a vectorized conditional operation. In this context, it checks if the number of unique
SUBZONE_N
values equals the total number of rows inmpsz
. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since no duplicate is found, we can immediately try to visualize how does the master plan looks like in the map using the following code.
Code
# set tmap mode (plot for lighter rendering, view for analysis)
tmap_mode('plot')
# display the data in a map
tm_shape(mpsz)+
tm_polygons(alpha = 0.3) +
tm_layout(main.title = 'Singapore Planning Zone', main.title.position = "center")
- tmap_mode from tmap package sets the mode for creating maps. The mode
'plot'
is chosen here for static map plotting, which is typically lighter and faster for rendering compared to the interactive'view'
mode. - tm_shape from tmap package prepares spatial data (
mpsz
in this case) for plotting. - tm_polygons from tmap package adds a layer of polygons to the map, with an alpha parameter to adjust the transparency of these polygons.
- tm_layout from tmap package customizes the layout of the map, including the title and its position.
- This code snippet creates a thematic map displaying the Singapore Planning Zone with polygonal areas, each represented with a certain level of transparency.
the following code will import the bus stop location dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = "../data/geospatial",
busstop layer = "BusStop") %>%
st_transform(crs = 3414)
Reading layer `BusStop' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 5159 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 3970.122 ymin: 26482.1 xmax: 48280.78 ymax: 52983.82
Projected CRS: SVY21
- st_read from sf package imports spatial vector data into R. It specifies the data source (
dsn
) and layer (layer
). Here, it reads the ‘BusStop’ layer from the specified directory. - st_transform from sf package transforms the coordinate reference system (CRS) of spatial data. In this case, it transforms the CRS of
busstop
to 3414.
using glimpse, we can see the structure of the data
Code
# check the data
glimpse(busstop)
Rows: 5,159
Columns: 4
$ BUS_STOP_N <chr> "22069", "32071", "44331", "96081", "11561", "66191", "2338…
$ BUS_ROOF_N <chr> "B06", "B23", "B01", "B05", "B05", "B03", "B02A", "B02", "B…
$ LOC_DESC <chr> "OPP CEVA LOGISTICS", "AFT TRACK 13", "BLK 239", "GRACE IND…
$ geometry <POINT [m]> POINT (13576.31 32883.65), POINT (13228.59 44206.38),…
glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
Next, we will check for duplicates using the following code. BUS_STOP_N is used as the basis for duplicate checking because it will be the reference in joining the data
Code
# check for duplicates based on unique id
if_else(n_distinct(busstop$BUS_STOP_N) == nrow(busstop), "no duplicates detected", "possible duplicates detected")
[1] "possible duplicates detected"
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “BusStop” layer from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
busstop
to 3414. - glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
Since duplicates is found, we will try to check what are the duplicated value using the following code.
Code
# Subset rows where BUS_STOP_N has duplicates and arrange by BUS_STOP_N
<- busstop[duplicated(busstop$BUS_STOP_N) | duplicated(busstop$BUS_STOP_N, fromLast = TRUE), ] %>%
duplicates arrange(BUS_STOP_N)
# show the number of duplicates
nrow(duplicates)
[1] 30
Code
# Display the sorted rows with duplicate BUS_STOP_N
kable(head(duplicates, n = 32))
BUS_STOP_N | BUS_ROOF_N | LOC_DESC | geometry |
---|---|---|---|
22501 | B02 | Blk 662A | POINT (13489.09 35536.4) |
22501 | B02 | BLK 662A | POINT (13488.02 35537.88) |
43709 | B06 | BLK 644 | POINT (18963.42 36762.8) |
43709 | B06 | BLK 644 | POINT (18952.02 36751.83) |
47201 | UNK | NA | POINT (22616.75 47793.68) |
47201 | NIL | W’LANDS NTH STN | POINT (22632.92 47934) |
51071 | B21 | MACRITCHIE RESERVOIR | POINT (28300.11 36045.9) |
51071 | B21 | MACRITCHIE RESERVOIR | POINT (28305.37 36036.67) |
52059 | B03 | OPP BLK 65 | POINT (30770.3 34460.06) |
52059 | B09 | BLK 219 | POINT (30565.45 36133.15) |
53041 | B05 | Upp Thomson Road | POINT (28105.8 37246.76) |
53041 | B07 | Upp Thomson Road | POINT (27956.34 37379.29) |
58031 | UNK | OPP CANBERRA DR | POINT (27089.69 47570.9) |
58031 | UNK | OPP CANBERRA DR | POINT (27111.07 47517.77) |
62251 | B03 | Bef Blk 471B | POINT (35500.54 39943.41) |
62251 | B03 | BEF BLK 471B | POINT (35500.36 39943.34) |
67421 | B01 | CHENG LIM STN EXIT B | POINT (34548.54 42052.15) |
67421 | NIL | CHENG LIM STN EXIT B | POINT (34741.77 42004.21) |
68091 | B01 | AFT BAKER ST | POINT (32164.11 42695.98) |
68091 | B08 | AFT BAKER ST | POINT (32038.84 43298.68) |
68099 | B02 | BEF BAKER ST | POINT (32154.9 42742.82) |
68099 | B07 | BEF BAKER ST | POINT (32004.05 43320.34) |
77329 | B01 | BEF PASIR RIS ST 53 | POINT (40765.35 39452.18) |
77329 | B03 | Pasir Ris Central | POINT (40728.15 39438.15) |
82221 | B01 | BLK 3A | POINT (35323.6 33257.05) |
82221 | B01 | Blk 3A | POINT (35308.74 33335.17) |
96319 | NA | Yusen Logistics | POINT (42187.23 34995.78) |
96319 | NIL | YUSEN LOGISTICS | POINT (42187.23 34995.78) |
97079 | B14 | OPP ST. JOHN’S CRES | POINT (44144.57 38980.25) |
97079 | B14 | OPP ST. JOHN’S CRES | POINT (44055.75 38908.5) |
- duplicated from base R identifies duplicate elements in a vector or rows in a data frame. Here, it’s used to find duplicate values in the
BUS_STOP_N
column of thebusstop
data frame. - arrange from dplyr package sorts a data frame by one or more columns. In this code,
arrange
is used to sort theduplicates
data frame byBUS_STOP_N
. - nrow returns the number of rows in a data frame. It’s used to count the number of duplicate rows.
- kable from the knitr package creates a simple table from a data frame or matrix. This function is used to display the first 32 rows of the
duplicates
data frame in a markdown table format.
Based on the table, we can see that the duplicates does comes from the same bus stop code. Therefore, the following code chunk will execute the duplicate removal and show the result where number of rows have reduced from 5161 to 5145.
Code
# Keep one row of the duplicates in the original dataset
<- busstop[!duplicated(busstop$BUS_STOP_N) | duplicated(busstop$BUS_STOP_N, fromLast = TRUE), ]
busstop
# Display the resulting dataset
glimpse(busstop)
Rows: 5,144
Columns: 4
$ BUS_STOP_N <chr> "22069", "32071", "44331", "96081", "11561", "66191", "2338…
$ BUS_ROOF_N <chr> "B06", "B23", "B01", "B05", "B05", "B03", "B02A", "B02", "B…
$ LOC_DESC <chr> "OPP CEVA LOGISTICS", "AFT TRACK 13", "BLK 239", "GRACE IND…
$ geometry <POINT [m]> POINT (13576.31 32883.65), POINT (13228.59 44206.38),…
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the
BUS_STOP_N
column of thebusstop
data frame to find duplicates. - The subset operation (
busstop[...]
) is used to keep only one row for each duplicate inbusstop
. The logical condition!duplicated(busstop$BUS_STOP_N)
keeps the first occurrence of each duplicate, andduplicated(busstop$BUS_STOP_N, fromLast = TRUE)
keeps the last occurrence. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column. It’s used to display the structure of the updated
busstop
data frame after removing duplicates.
next, we try to visualize how does the bus stop distribution looks like in the map using the following code.
Code
# set tmap mode (plot for lighter rendering, view for analysis)
tmap_mode('plot')
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.3)+
tm_shape(busstop)+
tm_dots() +
tm_layout(main.title = 'Bus Stop Distribution Map', main.title.position = "center")
- tmap_mode from tmap package sets the mode for creating maps. The mode
'plot'
is chosen for static map plotting, which is typically faster and lighter for rendering than the interactive'view'
mode. - tm_shape from tmap package prepares spatial data for plotting. It’s used twice in this code: first for the
mpsz
dataset and then forbusstop
. - tm_polygons from tmap package adds a layer of polygons to the map, in this case, for the
mpsz
data. - tm_dots from tmap package adds a layer of dots to the map, representing the
busstop
data. - tm_layout from tmap package customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map showing the distribution of bus stops (
busstop
) over a polygonal map of planning zones (mpsz
).
the following code will import the train station dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
station layer = 'RapidTransitSystemStation') %>%
st_transform(crs = 3414)
Reading layer `RapidTransitSystemStation' from data source
`C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 220 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 6068.209 ymin: 27478.44 xmax: 45377.5 ymax: 47913.58
Projected CRS: SVY21
Code
# the data contain non closed ring, use st_is_valid to fix
<- station %>%
station filter(st_is_valid(.))
- st_read from the sf package is used to read spatial data from a file, database, or web service. In this code, it’s used to read the ‘RapidTransitSystemStation’ layer from the geospatial data located at ‘../data/geospatial’.
- st_transform from the sf package is used to transform or convert coordinates of simple feature. Here, it’s used to transform the coordinates of the
station
data to the coordinate reference system (CRS) with the EPSG code 3414. - st_is_valid from the sf package checks if the geometry, in this case
station
, is valid. Thefilter
function from the dplyr package is then used to keep only the valid geometries instation
.
In geospatial data, a “non-closed ring” refers to a geometric shape that is intended to form a closed loop (like a polygon) but, due to some issues in the data, is not properly closed. It might have a small gap or overlap at the supposed endpoint, making it an invalid geometric object.
The existence of non-closed rings in a dataset could result from various reasons, such as errors in data collection, digitization issues, or inaccuracies in the original source. These issues can lead to geometric shapes that do not fulfill the criteria of a closed ring, making the data inconsistent or problematic for further spatial analysis.
To address this, the st_is_valid
function is used in the given R code snippet. This function is designed to check the validity of geometries in a spatial dataset. When applied to the station
dataset, the st_is_valid
function identifies and filters out any geometries (in this case, stations) that are not valid, essentially removing those with non-closed rings.
By using filter(st_is_valid(.))
, we are keeping only the valid geometries in the station
dataset, effectively fixing or cleaning the data by excluding any stations with non-closed rings. This ensures that the remaining geometries in the dataset are properly formed, closed rings, making them suitable for accurate spatial analysis and visualization.
using glimpse, we can see the structure of the data
Code
# check the data
glimpse(station)
Rows: 217
Columns: 5
$ TYP_CD <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ STN_NAM <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ TYP_CD_DES <chr> "MRT", "MRT", "MRT", "MRT", "MRT", "LRT", "MRT", "MRT", "LR…
$ STN_NAM_DE <chr> "ESPLANADE MRT STATION", "PAYA LEBAR MRT STATION", "DHOBY G…
$ geometry <POLYGON [m]> POLYGON ((30566.07 30621.21..., POLYGON ((34495.6 3…
glimpse from the dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column. It’s used to display the structure of the station
data frame after the transformations.
next, check for possible duplicates using this code. the duplicate consider geometry as the unique value as different MRT station should have different location
Code
# check for duplicates based on unique id
if_else(n_distinct(station$geometry) == nrow(station), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. In this code, it’s used to count the unique
geometry
values in thestation
data frame. - nrow from base R returns the number of rows in a data frame. It’s used to get the total number of rows in
station
. - if_else from dplyr package performs a vectorized conditional operation. In this context, it checks if the number of unique
geometry
values equals the total number of rows instation
. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since no duplicate is found, we can immediately try to visualize how does the master plan looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(col = 'white', alpha = 0.01) +
tm_shape(station) +
tm_fill(col = 'green',
id = 'STN_NAM_DE') +
tm_layout(main.title = 'MRT Station Distribution Map', main.title.position = "center")
- tm_shape from the tmap package is used to specify the spatial object that you want to visualize. In this code, it’s used twice to specify two different spatial objects:
mpsz
andstation
. - tm_polygons from the tmap package is used to create a layer of polygons. Here, it’s used to create a layer of polygons from
mpsz
with white color and 0.01 alpha (transparency). - tm_fill from the tmap package is used to fill the polygons of
station
with green color. Theid
argument is set to ‘STN_NAM_DE’, which means the polygons are grouped by the ‘STN_NAM_DE’ attribute ofstation
. - tm_layout from the tmap package is used to set the layout of the map. Here, it’s used to set the main title of the map to ‘MRT Station Distribution Map’ and position it in the center.
the following code will import the train exit location dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
trainexit layer = 'Train_Station_Exit_Layer') %>%
st_transform(crs = 3414)
Reading layer `Train_Station_Exit_Layer' from data source
`C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 565 features and 2 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 6134.086 ymin: 27499.7 xmax: 45356.36 ymax: 47865.92
Projected CRS: SVY21
- st_read from the sf package is used to read spatial data from a file, database, or web service. In this code, it’s used to read the ‘Train_Station_Exit_Layer’ layer from the geospatial data located at ‘../data/geospatial’.
- st_transform from the sf package is used to transform or convert coordinates of simple feature. Here, it’s used to transform the coordinates of the
trainexit
data to the coordinate reference system (CRS) with the EPSG code 3414.
using glimpse, we can see the structure of the data
Code
glimpse(trainexit)
Rows: 565
Columns: 3
$ stn_name <chr> "MACPHERSON MRT STATION", "MACPHERSON MRT STATION", "MACPHER…
$ exit_code <chr> "Exit A", "Exit B", "Exit C", "Exit B", "Exit A", "Exit A", …
$ geometry <POINT [m]> POINT (34285.07 34322.99), POINT (34382.15 34231.9), P…
glimpse from the dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column. It’s used to display the structure of the trainexit
data frame after the transformations.
next, check for possible duplicates using this code. the duplicate consider geometry as the unique value as different MRT exit should have different location
Code
# check for duplicates based on unique id
if_else(n_distinct(trainexit$geometry) == nrow(trainexit), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from the dplyr package is used to count the number of unique values in a vector. In this code, it’s used to count the number of unique geometries in the
trainexit
data frame. - nrow from base R is used to get the number of rows in a data frame. Here, it’s used to get the number of rows in the
trainexit
data frame. - if_else from the dplyr package is a vectorized conditional function that returns a value based on whether a condition is true or false. In this code, it’s used to check if the number of unique geometries is equal to the number of rows in
trainexit
. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since no duplicate is found, we can immediately try to visualize how does the master plan looks like in the map using the following code.
Code
# visualize the data
tm_shape(mpsz)+
tm_polygons(alpha = 0.5)+
tm_shape(trainexit)+
tm_dots(col = 'blue',
id = 'exit_id') +
tm_layout(main.title = 'Train Station Exit Distribution Map', main.title.position = "center")
- tm_shape from tmap package prepares spatial data for plotting. It’s used here for
mpsz
andtrainexit
datasets. - tm_polygons adds a layer of polygons to the map, with an alpha parameter to adjust the transparency of these polygons for
mpsz
. - tm_dots adds a layer of dots to the map, representing the
trainexit
data. The color of the dots is set to blue, and the identifier (id
) is set to ‘exit_id’. - tm_layout customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map displaying the distribution of train station exits (
trainexit
) over a polygonal map of planning zones (mpsz
), with moderate transparency set for the polygons.
the following code will import the business point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = "../data/geospatial",
biz layer = "Business") %>%
st_transform(crs = 3414)
Reading layer `Business' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 6550 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 3669.148 ymin: 25408.41 xmax: 47034.83 ymax: 50148.54
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “Business” layer from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
biz
to 3414.
using glimpse, we can see the structure of the data
Code
glimpse(biz)
Rows: 6,550
Columns: 4
$ POI_NAME <chr> "JOHN CHEN", "TROPICAL INDUSTRIAL BUILDING", "LIAN CHEONG I…
$ POI_ST_NUM <chr> "6", "14", "12", NA, "2", "21", "68", "68", NA, "14", "10",…
$ POI_ST_NAM <chr> "LITTLE RD", "LITTLE RD", "LITTLE RD", NA, "LITTLE RD", "LO…
$ geometry <POINT [m]> POINT (33818.36 35620.16), POINT (33770.51 35610.2), …
glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
next, check for possible duplicates using this code. considering some business might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(biz) == nrow(biz), "no duplicates detected", "possible duplicates detected")
[1] "possible duplicates detected"
- n_distinct from the dplyr package is used to count the number of unique values in a vector. In this code, it’s used to count the number of unique geometries in the
trainexit
data frame. - nrow from base R is used to get the number of rows in a data frame. Here, it’s used to get the number of rows in the
trainexit
data frame. - if_else from the dplyr package is a vectorized conditional function that returns a value based on whether a condition is true or false. In this code, it’s used to check if the number of unique geometries is equal to the number of rows in
trainexit
. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since duplicates is found, we will try to check what are the duplicated value using the following code.
Code
# Subset rows where BUS_STOP_N has duplicates and arrange by BUS_STOP_N
<- biz[duplicated(biz) | duplicated(biz, fromLast = TRUE), ] %>%
duplicates arrange(POI_NAME)
# Display the sorted rows with duplicate BUS_STOP_N
head(duplicates)
Simple feature collection with 2 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 27455.94 ymin: 28233.69 xmax: 27455.94 ymax: 28233.69
Projected CRS: SVY21 / Singapore TM
POI_NAME POI_ST_NUM POI_ST_NAM geometry
1 KEPPEL DISTRIPARK 511 KG BAHRU RD POINT (27455.94 28233.69)
2 KEPPEL DISTRIPARK 511 KG BAHRU RD POINT (27455.94 28233.69)
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the
biz
data frame to find duplicates. The logical conditionduplicated(biz) | duplicated(biz, fromLast = TRUE)
keeps both the first and last occurrence of each duplicate. - The subset operation (
biz[...]
) is used to keep only the rows for each duplicate inbiz
. - arrange from the dplyr package is used to arrange rows by column values. Here, it’s used to arrange the rows of
duplicates
by ‘POI_NAME’. - head from base R is used to return the first parts of a vector, matrix, table, data frame or function. In this code, it’s used to display the first few rows of the
duplicates
data frame after removing duplicates and arranging by ‘POI_NAME’.
Based on the table, we can see that the duplicates does comes from the same business point of interest. Therefore, the following code chunk will execute the duplicate removal and show the result where number of rows have reduced from 6550 to 6549
Code
# Keep one row of the duplicates in the original dataset
<- biz[!duplicated(biz) | duplicated(biz, fromLast = TRUE), ]
biz
# Display the resulting dataset
glimpse(biz)
Rows: 6,549
Columns: 4
$ POI_NAME <chr> "JOHN CHEN", "TROPICAL INDUSTRIAL BUILDING", "LIAN CHEONG I…
$ POI_ST_NUM <chr> "6", "14", "12", NA, "2", "21", "68", "68", NA, "14", "10",…
$ POI_ST_NAM <chr> "LITTLE RD", "LITTLE RD", "LITTLE RD", NA, "LITTLE RD", "LO…
$ geometry <POINT [m]> POINT (33818.36 35620.16), POINT (33770.51 35610.2), …
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the
biz
data frame to find duplicates. The logical condition!duplicated(biz) | duplicated(biz, fromLast = TRUE)
keeps both the first and last occurrence of each duplicate. - The subset operation (
biz[...]
) is used to keep only one row for each duplicate inbiz
. - glimpse from the dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column. It’s used to display the structure of the
biz
data frame after removing duplicates.
after cleaning the duplicates, now we can visualize the distribution of business point of interest using the following code
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.01)+
tm_shape(biz)+
tm_dots(col = 'red') +
tm_layout(main.title = 'Business Distribution Map', main.title.position = "center")
- tm_shape from the tmap package is used to specify the spatial object that you want to visualize. In this code, it’s used twice to specify two different spatial objects:
mpsz
andtrainexit
. - tm_polygons from the tmap package is used to create a layer of polygons. Here, it’s used to create a layer of polygons from
mpsz
with 0.5 alpha (transparency). - tm_dots from the tmap package is used to create a layer of dots. Here, it’s used to create a layer of dots from
trainexit
with blue color. Theid
argument is set to ‘exit_id’, which means the dots are grouped by the ‘exit_id’ attribute oftrainexit
. - tm_layout from the tmap package is used to set the layout of the map. Here, it’s used to set the main title of the map to ‘Train Station Exit Distribution Map’ and position it in the center.
the following code will import the entertainment point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
entertn layer = 'entertn') %>%
st_transform(crs = 3414)
Reading layer `entertn' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 114 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 10809.34 ymin: 26528.63 xmax: 41600.62 ymax: 46375.77
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “entertn” layer from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
entertn
to 3414. - This code snippet reads and transforms spatial data related to entertainment venues, converting it to the specified CRS.
using glimpse, we can see the structure of the data
Code
glimpse(entertn)
Rows: 114
Columns: 4
$ POI_NAME <chr> "TP AUDITORIUM", "NP CONVENTION CENTRE", "SP AUDITORIUM", "…
$ POI_ST_NUM <chr> NA, NA, NA, "1", "350", NA, "201", NA, "83", "328", NA, "5"…
$ POI_ST_NAM <chr> NA, NA, NA, "FULLERTON SQ", "BALESTIER RD", "TRENGGANU ST",…
$ geometry <POINT [m]> POINT (39115.71 36392.13), POINT (21533.12 34921.34),…
next, check for possible duplicates using this code. considering some entertainment might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(entertn) == nrow(entertn), "no duplicates detected", "possible duplicates detected")
[1] "possible duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
entertn
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
entertn
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
entertn
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since duplicates is found, we will try to check what are the duplicated value using the following code.
Code
# Subset rows where BUS_STOP_N has duplicates and arrange by BUS_STOP_N
<- entertn[duplicated(entertn) | duplicated(entertn, fromLast = TRUE), ] %>%
duplicates arrange(POI_NAME)
# Display the sorted rows with duplicate
head(duplicates)
Simple feature collection with 2 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 30063.5 ymin: 30677.41 xmax: 30063.5 ymax: 30677.41
Projected CRS: SVY21 / Singapore TM
POI_NAME POI_ST_NUM POI_ST_NAM geometry
1 CAPITOL THEATRE 13 STAMFORD RD POINT (30063.5 30677.41)
2 CAPITOL THEATRE 13 STAMFORD RD POINT (30063.5 30677.41)
Based on the table, we can see that the duplicates does comes from the same entertainment point of interest. Therefore, the following code chunk will execute the duplicate removal and show the result where number of rows have reduced from 114 to 113
Code
# Keep one row of the duplicates in the original dataset
<- entertn[!duplicated(entertn) | duplicated(entertn, fromLast = TRUE), ]
entertn
# Display the resulting dataset
glimpse(entertn)
Rows: 113
Columns: 4
$ POI_NAME <chr> "TP AUDITORIUM", "NP CONVENTION CENTRE", "SP AUDITORIUM", "…
$ POI_ST_NUM <chr> NA, NA, NA, "1", "350", NA, "201", NA, "83", "328", NA, "5"…
$ POI_ST_NAM <chr> NA, NA, NA, "FULLERTON SQ", "BALESTIER RD", "TRENGGANU ST",…
$ geometry <POINT [m]> POINT (39115.71 36392.13), POINT (21533.12 34921.34),…
- duplicated from base R identifies duplicate elements in a vector or rows in a data frame. Here, it’s used to find duplicate rows in the
entertn
data frame. - arrange from dplyr package sorts a data frame by one or more columns. In this case,
arrange
is used to sort theduplicates
data frame byPOI_NAME
. - head from base R retrieves the first
n
rows of a data frame or matrix. Here, it’s used to display the first few rows of the sortedduplicates
data frame. - This code snippet identifies and displays the first few duplicate rows in the
entertn
data frame, sorted by the Point of Interest (POI) name.
next, we try to visualize how does the entertainment point of interest distribution looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.01)+
tm_shape(entertn)+
tm_dots(col = 'cyan',
id = 'POI_NAME') +
tm_layout(main.title = 'Entertainment Distribution Map', main.title.position = "center")
- tm_shape from tmap package is used to specify the spatial object from which the spatial data will be visualized. In this code, it’s applied to
mpsz
andentertn
. - tm_polygons is used to create a polygons layer. The
alpha
parameter is used to adjust the transparency of the polygons. - tm_dots is used to create a dots layer. The
col
parameter is used to specify the color of the dots, and theid
parameter is used to label the dots. - tm_layout is used to set the layout parameters. In this code, it’s used to set the main title of the map and its position.
the following code will import the F&B point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
fnb layer = 'F&B') %>%
st_transform(crs = 3414)
Reading layer `F&B' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 1919 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 6010.495 ymin: 25343.27 xmax: 45462.43 ymax: 48796.21
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “F&B” layer (likely representing food and beverage establishments) from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
fnb
to 3414.
using glimpse, we can see the structure of the data
Code
glimpse(fnb)
Rows: 1,919
Columns: 4
$ POI_NAME <chr> "KHEL", "I PUB", "LARK LOUNGE & NITE-CLUB", "CHAKRAVARTHY",…
$ POI_ST_NUM <chr> "141", "14", "195", "195", "48", "36", "10", "697", "11", "…
$ POI_ST_NAM <chr> "KITCHENER RD", "CHUN TIN RD", "LAVENDER ST", "LAVENDER ST"…
$ geometry <POINT [m]> POINT (30654.44 32466.51), POINT (21515.34 36007.18),…
glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
next, check for possible duplicates using this code. considering some F & B might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(fnb) == nrow(fnb), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
fnb
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
fnb
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
fnb
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since no duplicate is found, we can immediately try to visualize how does the F&B distribution looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.01)+
tm_shape(fnb)+
tm_dots(col = 'magenta',
id = 'POI_NAME') +
tm_layout(main.title = 'Food & Beverage Distribution Map', main.title.position = "center")
- tm_shape from tmap package prepares spatial data for plotting. It’s used here for both
mpsz
(planning zones) andfnb
(food and beverage locations). - tm_polygons adds a layer of polygons to the map, with the alpha parameter setting the transparency for the
mpsz
polygons. - tm_dots adds a layer of dots to the map, representing
fnb
data. The dots are colored magenta and identified byPOI_NAME
. - tm_layout customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map displaying the distribution of food and beverage outlets (
fnb
) over a minimally styled polygonal map of planning zones (mpsz
).
the following code will import the financial services point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
finance layer = 'FinServ') %>%
st_transform(crs = 3414)
Reading layer `FinServ' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 3320 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 4881.527 ymin: 25171.88 xmax: 46526.16 ymax: 49338.02
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “FinServ” layer (likely representing financial services) from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
finance
to 3414.
Code
glimpse(finance)
Rows: 3,320
Columns: 4
$ POI_NAME <chr> "UOB", "POSB", "UOB", "OCBC", "OCBC", "MAYBANK", "ADPOST MO…
$ POI_ST_NUM <chr> "201", "375", "375", "375", NA, "707", "163", NA, "11", NA,…
$ POI_ST_NAM <chr> "YISHUN AVE 2", "COMMONWEALTH AVE", "COMMONWEALTH AVE", "CO…
$ geometry <POINT [m]> POINT (27966.77 44304.65), POINT (24163.96 31606.25),…
- glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
next, check for possible duplicates using this code. considering some financial services might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(finance) == nrow(finance), "no duplicates detected", "possible duplicates detected")
[1] "possible duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
finance
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
finance
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
finance
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since duplicates is found, we will try to check what are the duplicated value using the following code.
Code
# Subset rows for duplicates and arrange by POI_NAME and POI_ST_NAM
<- finance[duplicated(finance) | duplicated(finance, fromLast = TRUE), ] %>%
duplicates arrange(POI_NAME, POI_ST_NAM)
# Display the sorted rows with duplicatew
kable(head(duplicates, n=20))
POI_NAME | POI_ST_NUM | POI_ST_NAM | geometry |
---|---|---|---|
ANZ | NA | MARINE PARADE CENTRAL | POINT (36195.63 31542.21) |
ANZ | NA | MARINE PARADE CENTRAL | POINT (36195.63 31542.21) |
ANZ | 87 | MARINE PARADE CENTRAL | POINT (36057.62 31668.26) |
ANZ | 87 | MARINE PARADE CENTRAL | POINT (36057.62 31668.26) |
ANZ | 360 | ORCHARD RD | POINT (27714.14 31996.56) |
ANZ | 360 | ORCHARD RD | POINT (27714.14 31996.56) |
ANZ | 50 | RAFFLES PL | POINT (30017.88 29712.09) |
ANZ | 50 | RAFFLES PL | POINT (30017.88 29712.09) |
BANK OF CHINA | 4 | BATTERY RD | POINT (30113.59 29758.53) |
BANK OF CHINA | 4 | BATTERY RD | POINT (30113.59 29758.53) |
BANK OF CHINA | 60 | EU TONG SEN ST | POINT (29271.11 29829.29) |
BANK OF CHINA | 60 | EU TONG SEN ST | POINT (29271.11 29829.29) |
BANK OF CHINA | 133 | MIDDLE RD | POINT (30189.25 31295.52) |
BANK OF CHINA | 133 | MIDDLE RD | POINT (30189.25 31295.52) |
BANK OF CHINA | 83 | PUNGGOL CENTRAL | POINT (35606.57 43071.85) |
BANK OF CHINA | 83 | PUNGGOL CENTRAL | POINT (35606.57 43071.85) |
CIMB BANK | 270 | ORCHARD RD | POINT (28308.43 31676.99) |
CIMB BANK | 270 | ORCHARD RD | POINT (28308.43 31676.99) |
CIMB BANK | 50 | RAFFLES PL | POINT (30017.88 29712.09) |
CIMB BANK | 50 | RAFFLES PL | POINT (30017.88 29712.09) |
- duplicated from base R identifies duplicate elements in a vector or rows in a data frame. Here, it’s used to find duplicate rows in the
finance
data frame. - arrange from dplyr package sorts a data frame by one or more columns. In this case,
arrange
is used to sort theduplicates
data frame byPOI_NAME
andPOI_ST_NAM
. - kable from the knitr package creates a simple table from a data frame or matrix. This function is used to display the first 20 rows of the
duplicates
data frame in a markdown table format. - This code snippet identifies, sorts, and displays the first 20 duplicate rows in the
finance
data frame, sorted by the Point of Interest (POI) name and street name.
Based on the table, we can see that the duplicates does comes from the same financial service point of interest. Therefore, the following code chunk will execute the duplicate removal and show the result where number of rows have reduced from 3320 to 3058
Code
# Keep one row of the duplicates in the original dataset
<- finance[!duplicated(finance) | duplicated(finance, fromLast = TRUE), ]
finance
# Display the resulting dataset
glimpse(finance)
Rows: 3,058
Columns: 4
$ POI_NAME <chr> "UOB", "POSB", "UOB", "OCBC", "OCBC", "MAYBANK", "ADPOST MO…
$ POI_ST_NUM <chr> "201", "375", "375", "375", NA, "707", "163", NA, "11", NA,…
$ POI_ST_NAM <chr> "YISHUN AVE 2", "COMMONWEALTH AVE", "COMMONWEALTH AVE", "CO…
$ geometry <POINT [m]> POINT (27966.77 44304.65), POINT (24163.96 31606.25),…
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the entire
finance
data frame to find duplicates. - The subset operation (
finance[...]
) is used to keep only one row for each duplicate infinance
. The logical condition!duplicated(finance)
keeps the first occurrence of each duplicate, andduplicated(finance, fromLast = TRUE)
keeps the last occurrence. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
- This code snippet removes duplicate rows from the
finance
data frame, retaining only one occurrence of each duplicate, and then provides an overview of the resulting data frame.
next, we try to visualize how does the financial services point of interest distribution looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.01)+
tm_shape(finance)+
tm_dots(col = 'black',
id = 'POI_NAME') +
tm_layout(main.title = 'Financial Service Distribution Map', main.title.position = "center")
the following code will import the leisure & recreation point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
lnr layer = 'Liesure&Recreation') %>%
st_transform(crs = 3414)
Reading layer `Liesure&Recreation' from data source
`C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 1217 features and 30 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 6010.495 ymin: 25134.28 xmax: 48439.77 ymax: 50078.88
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used for reading spatial vector data into R. It imports data from a specified data source (
dsn
) and layer (layer
). In this code, it reads the “Liesure&Recreation” layer (presumably representing leisure and recreation locations) from the data source located at"../data/geospatial"
. - st_transform from sf package transforms the coordinate reference system (CRS) of a spatial object. Here, it transforms the CRS of
lnr
to 3414.
using glimpse, we can see the structure of the data
Code
glimpse(lnr)
Rows: 1,217
Columns: 31
$ LINK_ID <dbl> 914885888, 1046871091, 845355245, 940657500, 940657500, 941…
$ POI_ID <dbl> 1192316147, 1132324271, 1132324254, 1110521716, 1110521715,…
$ SEQ_NUM <int> 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
$ FAC_TYPE <int> 8410, 7997, 7997, 7997, 7997, 8410, 7997, 7997, 7997, 7997,…
$ POI_NAME <chr> "NIE ART GALLERY", "ASPIRE CONCEPT", "SOCCERPUNTER", "ANAND…
$ POI_LANGCD <chr> "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "EN…
$ POI_NMTYPE <chr> "B", "B", "B", "B", "B", "B", "B", "J", "B", "B", "B", "B",…
$ POI_ST_NUM <chr> NA, "883", "14", "1", "1", "39", NA, NA, "108", "11", "11",…
$ ST_NUM_FUL <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "169A", NA, NA,…
$ ST_NFUL_LC <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "ENG", NA, NA, …
$ ST_NAME <chr> "NANYANG CRES", "NORTH BRIDGE RD", "ROBINSON RD", "MARINE P…
$ ST_LANGCD <chr> "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", NA, NA, "ENG", "E…
$ POI_ST_SD <chr> "R", "L", "L", "R", "R", "L", "R", "R", "L", "L", "L", "R",…
$ ACC_TYPE <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ PH_NUMBER <chr> NA, "66347769", NA, NA, "63446164", "63327591", "67659324",…
$ CHAIN_ID <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ NAT_IMPORT <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N",…
$ PRIVATE <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N",…
$ IN_VICIN <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N",…
$ NUM_PARENT <int> 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0,…
$ NUM_CHILD <int> 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ PERCFRREF <int> NA, NA, NA, 43, 43, 51, 40, 40, NA, NA, 40, 99, 59, 15, NA,…
$ VANCITY_ID <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ ACT_ADDR <chr> NA, NA, NA, NA, NA, NA, "1 CHOA CHU KANG STREET 53 …
$ ACT_LANGCD <chr> NA, NA, NA, NA, NA, NA, "ENG", "ENG", NA, NA, NA, NA, NA, N…
$ ACT_ST_NAM <chr> NA, NA, NA, NA, NA, NA, "CHOA CHU KANG STREET 53", "CHOA CH…
$ ACT_ST_NUM <chr> NA, NA, NA, NA, NA, NA, "1", "1", NA, NA, NA, NA, NA, NA, N…
$ ACT_ADMIN <chr> NA, NA, NA, NA, NA, NA, "SINGAPORE", "SINGAPORE", NA, NA, N…
$ ACT_POSTAL <chr> NA, NA, NA, NA, NA, NA, "689236", "689236", NA, NA, NA, NA,…
$ ENTR_TYPE <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ geometry <POINT [m]> POINT (10664.66 36585.97), POINT (31490.24 32040.81),…
- glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
- This function is used here to display an overview of the
lnr
data frame, which contains spatial data related to leisure and recreation facilities. The output will give insights into the types and structures of the data available inlnr
, such as column names, data types, and sample values.
next, check for possible duplicates using this code. considering some leisure & recreation might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(lnr) == nrow(lnr), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
lnr
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
lnr
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
lnr
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since no duplicate is found, we can immediately try to visualize how does the leisure & entertainment point of interest distribution looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz)+
tm_polygons(alpha = 0.01)+
tm_shape(lnr)+
tm_dots(col = 'coral',
id = 'POI_NAME') +
tm_layout(main.title = 'Leisure & Recreation Distribution Map', main.title.position = "center")
- tm_shape from tmap package prepares spatial data for plotting. It’s used here for
mpsz
andlnr
(Leisure & Recreation) datasets. - tm_polygons adds a layer of polygons to the map. For
mpsz
, the polygons are set with high transparency (alpha = 0.01
). - tm_dots adds a layer of dots to the map, representing the
lnr
data. The color and identifier (id
) of the dots are specified. - tm_layout customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map displaying the distribution of leisure and recreation points of interest (POIs) over a minimally styled polygonal map of planning zones (
mpsz
).
the following code will import the retails point of interest dataset and assign the correct coordinate reference.
Code
<- st_read(dsn = '../data/geospatial',
retails layer = 'Retails') %>%
st_transform(crs = 3414)
Reading layer `Retails' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 37635 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 4737.982 ymin: 25171.88 xmax: 48265.04 ymax: 50135.28
Projected CRS: SVY21 / Singapore TM
- st_read from sf package is used to read simple features from a file or database. In this code, it’s applied to the
Retails
layer of thegeospatial
data source to import the spatial data as ansf
object. - st_transform from sf package is used to transform the coordinate reference system (CRS) of the
sf
object. In this code, it’s applied to theretails
object to change its CRS to3414
, which is the code for SVY21 / Singapore TM projection. - summary from base R is used to provide a summary of the
sf
object, including its dimensions, geometry type, CRS, and a summary of each column. It’s used to display the summary of theretails
object after transforming its CRS.
using glimpse, we can see the structure of the data
Code
glimpse(retails)
Rows: 37,635
Columns: 4
$ POI_NAME <chr> "TIAN KEE & CO", "PEOPLE TRADITIONAL CHINESE MEDICAL", "RIV…
$ POI_ST_NUM <chr> "12", "12", NA, NA, "588", "243", "208", "267", "231", "158…
$ POI_ST_NAM <chr> "DAKOTA CRES", "DAKOTA CRES", NA, NA, "SERANGOON RD", "ALEX…
$ geometry <POINT [m]> POINT (33713.83 32023.15), POINT (33713.83 32023.15),…
- glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
- This function is used here to display an overview of the
retails
data frame. The output will give insights into the types and structures of the data available inretails
, such as column names, data types, and sample values. Since the content and structure of theretails
data frame are not detailed in the prompt, it’s assumed to contain retail-related spatial data.
next, check for possible duplicates using this code. considering some financial services might have branches, the duplicate condition here is only if all column value is the same
Code
# check for duplicates based on unique id
if_else(n_distinct(retails) == nrow(retails), "no duplicates detected", "possible duplicates detected")
[1] "possible duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
retails
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
retails
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
retails
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
since duplicates is found, we will try to check what are the duplicated value using the following code.
Code
# Subset rows for duplicates and arrange by POI_NAME and POI_ST_NAM
<- retails[duplicated(retails) | duplicated(retails, fromLast = TRUE), ] %>%
duplicates arrange(POI_NAME, POI_ST_NAM)
# Display the sorted rows with duplicatew
kable(head(duplicates, n=20))
POI_NAME | POI_ST_NUM | POI_ST_NAM | geometry |
---|---|---|---|
10 & 10 SPORTING CO. | 28 | KALLANG PL | POINT (31757.32 33054.78) |
10 & 10 SPORTING CO. | 28 | KALLANG PL | POINT (31757.32 33054.78) |
123 SALES | 662 | BUFFALO RD | POINT (29895.44 32149.16) |
123 SALES | 662 | BUFFALO RD | POINT (29895.44 32149.16) |
AIK BAN HENG & TRADING | 456 | ANG MO KIO AVE 10 | POINT (30820.2 38832.31) |
AIK BAN HENG & TRADING | 456 | ANG MO KIO AVE 10 | POINT (30820.2 38832.31) |
AIK KIONG ENGINEERING CO | 90 | DUNLOP ST | POINT (30182.57 31993.25) |
AIK KIONG ENGINEERING CO | 90 | DUNLOP ST | POINT (30182.57 31993.25) |
ALEXANDRA CENTRAL | 321 | ALEXANDRA RD | POINT (24837.25 30020.6) |
ALEXANDRA CENTRAL | 321 | ALEXANDRA RD | POINT (24837.25 30020.6) |
ANACAONA | 128 | DUNLOP ST | POINT (30113.57 32037.48) |
ANACAONA | 128 | DUNLOP ST | POINT (30113.57 32037.48) |
ANTECH INTERNET CAFE | 44 | UPP DICKSON RD | POINT (30170.33 32060.7) |
ANTECH INTERNET CAFE | 44 | UPP DICKSON RD | POINT (30170.33 32060.7) |
BABY GUESS | 290 | ORCHARD RD | POINT (28306.21 31787.57) |
BABY GUESS | 290 | ORCHARD RD | POINT (28306.21 31787.57) |
BAN CHOON MEDICAL STORE | 130 | TELOK AYER ST | POINT (29649.5 29342.76) |
BAN CHOON MEDICAL STORE | 130 | TELOK AYER ST | POINT (29649.5 29342.76) |
BANG & OLUFSEN | 10 | SCOTTS RD | POINT (27957.87 32092.76) |
BANG & OLUFSEN | 10 | SCOTTS RD | POINT (27957.87 32092.76) |
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the
retails
data frame to find duplicates. - The subset operation (
retails[...]
) is used to keep only one row for each duplicate inretails
. The logical conditionduplicated(retails)
keeps the first occurrence of each duplicate, andduplicated(retails, fromLast = TRUE)
keeps the last occurrence. - arrange from dplyr package is used to reorder rows by column values. In this code, it’s used to sort the
duplicates
data frame byPOI_NAME
andPOI_ST_NAM
. - kable from knitr package is used to create a markdown table from a data frame. In this code, it’s used to display the first 20 rows of the
duplicates
data frame.
Based on the table, we can see that the duplicates does comes from the same retail point of interest. Therefore, the following code chunk will execute the duplicate removal and show the result where number of rows have reduced from 37635 to 37463
Code
# Keep one row of the duplicates in the original dataset
<- retails[!duplicated(retails) | duplicated(retails, fromLast = TRUE), ]
retails
# Display the resulting dataset
glimpse(retails)
Rows: 37,463
Columns: 4
$ POI_NAME <chr> "TIAN KEE & CO", "PEOPLE TRADITIONAL CHINESE MEDICAL", "RIV…
$ POI_ST_NUM <chr> "12", "12", NA, NA, "588", "243", "208", "267", "231", "158…
$ POI_ST_NAM <chr> "DAKOTA CRES", "DAKOTA CRES", NA, NA, "SERANGOON RD", "ALEX…
$ geometry <POINT [m]> POINT (33713.83 32023.15), POINT (33713.83 32023.15),…
- duplicated from base R is used to identify duplicate elements in a vector or rows in a data frame. In this code, it’s applied to the entire
retails
data frame to find duplicates. - The subset operation (
retails[...]
) is used to keep only one row for each duplicate inretails
. The logical condition!duplicated(retails)
keeps the first occurrence of each duplicate, andduplicated(retails, fromLast = TRUE)
keeps the last occurrence. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
- This code snippet removes duplicate rows from the
retails
data frame, retaining only one occurrence of each duplicate, and then provides an overview of the resulting data frame.
next, we try to visualize how does the retail point of interest distribution looks like in the map using the following code.
Code
# visualize the output
tm_shape(mpsz) +
tm_polygons(alpha = 0.01) +
tm_shape(retails) +
tm_dots(col = 'lightcoral', id = 'POI_NAME') +
tm_layout(main.title="Retail Distribution Map", main.title.position = "center")
- tm_shape from tmap package prepares spatial data for plotting. It’s used here for
mpsz
(planning zones) andretails
(retail locations). - tm_polygons adds a layer of polygons to the map. For
mpsz
, the polygons are set with high transparency (alpha = 0.01
). - tm_dots adds a layer of dots to the map, representing
retails
data. The dots are colored light coral and are identified byPOI_NAME
. - tm_layout customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map displaying the distribution of retail outlets (
retails
) over a minimally styled polygonal map of planning zones (mpsz
).
Aspatial
This subsection will import the aspatial data used in this project and check it. The data includes Passenger Volume by Origin Destination Bus Stops, HDB data which explanations can be found in Overview section.
Passenger Volume
Firstly, the following code will import the Passenger Volume by Origin Destination Bus Stops dataset. At the same time, it will also set the reference bus stop code data type to factor
for easing compatibility issue and more efficient processing. As previously mentioned, this project will focus on weekday morning peak, so the code will also filter the data by that criteria, grouping it using the reference column, while summing the total trip for each unique grouped reference value. Finally, the code will generate output of summary statistics of the resulting dataset.
Code
# Load csv file
<- read_csv("../data/aspatial/origin_destination_bus_202310.csv.gz")
odb10
# change georeference data type into factors
<- odb10 %>%
odb10 mutate(
ORIGIN_PT_CODE = as.factor(ORIGIN_PT_CODE),
DESTINATION_PT_CODE = as.factor(DESTINATION_PT_CODE)
)
# filter and group the data
<- odb10 %>%
odb10 filter(DAY_TYPE == "WEEKDAY",
>= 6 & TIME_PER_HOUR <= 9) %>%
TIME_PER_HOUR group_by(ORIGIN_PT_CODE, DESTINATION_PT_CODE) %>%
summarise(TRIPS = sum(TOTAL_TRIPS))
# check the summary statistics of resulting dataframe
describe(odb10)
odb10
3 Variables 242208 Observations
--------------------------------------------------------------------------------
ORIGIN_PT_CODE
n missing distinct
242208 0 5029
lowest : 01012 01013 01019 01029 01039, highest: 99139 99161 99171 99181 99189
--------------------------------------------------------------------------------
DESTINATION_PT_CODE
n missing distinct
242208 0 5043
lowest : 01012 01013 01019 01029 01039, highest: 99139 99161 99171 99181 99189
--------------------------------------------------------------------------------
TRIPS
n missing distinct Info Mean Gmd .05 .10
242208 0 3335 0.997 107.2 180.8 1 1
.25 .50 .75 .90 .95
3 15 57 187 373
lowest : 1 2 3 4 5, highest: 41201 46505 72829 74796 97600
--------------------------------------------------------------------------------
- read_csv from readr package reads a CSV file into R, converting it to a data frame.
- mutate from dplyr package is used to add new variables to a data frame or modify existing ones. Here, it converts
ORIGIN_PT_CODE
andDESTINATION_PT_CODE
to factors. - filter from dplyr package is used to subset rows based on specified conditions. In this code, it filters data for weekdays during morning peak hours (6 to 9 AM).
- group_by from dplyr package groups the data by specified columns, here by
ORIGIN_PT_CODE
andDESTINATION_PT_CODE
. - summarise from dplyr package calculates summary statistics for each group, in this case summing up
TOTAL_TRIPS
. - describe from Hmisc package provides a detailed summary of an object’s contents, typically offering statistics like mean, standard deviation, frequency, and others.
The data provides details about the origin and destination points, along with the corresponding number of total trips, time information, and categorization based on day types. The variable summaries indicate the data distribution, with details such as the unique values, frequency, and descriptive statistics for each column.
HDB
the following code will import the HDB dataset and check the data frame.
Code
# Load csv file
<- read_csv("../data/aspatial/hdb.csv")
hdb
# check the data
glimpse(hdb)
Rows: 12,442
Columns: 37
$ ...1 <dbl> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14…
$ blk_no <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1"…
$ street <chr> "BEACH RD", "BEDOK STH AVE 1", "CANTONMENT RD", …
$ max_floor_lvl <dbl> 16, 14, 2, 15, 4, 25, 12, 14, 12, 2, 15, 15, 13,…
$ year_completed <dbl> 1970, 1975, 2010, 1982, 1975, 1982, 1975, 1977, …
$ residential <chr> "Y", "Y", "N", "Y", "Y", "Y", "Y", "Y", "Y", "N"…
$ commercial <chr> "Y", "N", "Y", "N", "Y", "N", "N", "N", "Y", "Y"…
$ market_hawker <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N"…
$ miscellaneous <chr> "N", "Y", "N", "N", "N", "N", "Y", "Y", "N", "N"…
$ multistorey_carpark <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N"…
$ precinct_pavilion <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N"…
$ bldg_contract_town <chr> "KWN", "BD", "CT", "BD", "PRC", "BM", "QT", "GL"…
$ total_dwelling_units <dbl> 142, 206, 0, 102, 55, 96, 125, 247, 95, 0, 220, …
$ `1room_sold` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ `2room_sold` <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ `3room_sold` <dbl> 138, 204, 0, 0, 54, 0, 118, 0, 62, 0, 216, 214, …
$ `4room_sold` <dbl> 1, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `5room_sold` <dbl> 2, 2, 0, 92, 1, 96, 7, 0, 33, 0, 4, 5, 0, 4, 0, …
$ exec_sold <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ multigen_sold <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ studio_apartment_sold <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ `1room_rental` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 319, 0, 0, 0…
$ `2room_rental` <dbl> 0, 0, 0, 0, 0, 0, 0, 247, 0, 0, 0, 0, 0, 0, 56, …
$ `3room_rental` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1,…
$ other_room_rental <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,…
$ lat <dbl> 1.295097, 1.320852, 1.275488, 1.327969, 1.388610…
$ lng <dbl> 103.8541, 103.9337, 103.8414, 103.9227, 103.9881…
$ building <chr> "RAFFLES HOTEL", "NIL", "PINNACLE @ DUXTON", "PI…
$ addr <chr> "1 BEACH ROAD RAFFLES HOTEL SINGAPORE 189673", "…
$ postal <chr> "189673", "460001", "080001", "461001", "500001"…
$ SUBZONE_NO <dbl> 2, 6, 3, 3, 1, 9, 10, 5, 3, 5, 1, 5, 2, 2, 1, 7,…
$ SUBZONE_N <chr> "CITY HALL", "BEDOK SOUTH", "CHINATOWN", "KEMBAN…
$ SUBZONE_C <chr> "DTSZ02", "BDSZ06", "OTSZ03", "BDSZ03", "CHSZ01"…
$ PLN_AREA_N <chr> "DOWNTOWN CORE", "BEDOK", "OUTRAM", "BEDOK", "CH…
$ PLN_AREA_C <chr> "DT", "BD", "OT", "BD", "CH", "BM", "QT", "GL", …
$ REGION_N <chr> "CENTRAL REGION", "EAST REGION", "CENTRAL REGION…
$ REGION_C <chr> "CR", "ER", "CR", "ER", "ER", "CR", "CR", "CR", …
- read_csv from readr package reads a CSV file into R, converting it to a data frame. In this code, it reads data from a file located at
"../data/aspatial/hdb.csv"
, which likely contains information about Housing Development Board (HDB) properties. - glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
- This code snippet imports and provides an overview of the
hdb
data frame, which presumably contains data related to HDB properties.
To standardize the geospatial reference, we need to set the CRS code to 3414 based on the latitude and langitude values. The following code will execute it. Simultaneously, the code will also visualize the distribution of HDB across Singapore.
Code
<- st_as_sf(hdb,
hdb_sf coords = c("lng", "lat"),
crs = 4326) %>%
st_transform(crs = 3414)
# visualize the output
tm_shape(mpsz)+
tm_polygons(col = 'white', alpha = 0.01) +
tm_shape(hdb_sf) +
tm_dots(col = 'lightblue',
id = 'building') +
tm_layout(main.title = 'HDB Distribution Map', main.title.position = "center")
- The
hdb
data frame, which contains information on the HDB buildings, is converted to a spatial data frame using thest_as_sf
function from the sf package. Thecoords
argument specifies the columns that contain the longitude and latitude coordinates, and thecrs
argument specifies the coordinate reference system (CRS) of the data. The CRS is then transformed to 3414, which is the EPSG code for the SVY21 projection used in Singapore. - The
mpsz
data frame, which contains information on the subzones in Singapore, is also a spatial data frame. It is used as the base layer for the map, and thetm_polygons
function from the tmap package is used to draw the polygons of the subzones. Thecol
argument sets the color of the polygons to white, and thealpha
argument sets the transparency to 0.01, making them barely visible. - The
hdb_sf
data frame, which contains the spatial information on the HDB buildings, is used as the overlay layer for the map, and thetm_dots
function from the tmap package is used to draw the points representing the buildings. Thecol
argument sets the color of the points to light blue, and theid
argument sets the column that contains the building names. - The
tm_layout
function from the tmap package is used to customize the layout of the map. Themain.title
argument sets the title of the map to “HDB Distribution Map”, and themain.title.position
argument sets the position of the title to center.
Schools
Geocoding involves converting an address or postal code into geographic coordinates like latitude and longitude. The OneMap API, particularly the Search API by the Singapore Land Authority, facilitates this process, retrieving latitude, longitude, and x,y coordinates based on a given address or postal code.
In R, the provided code utilizes the read_csv function from the readr package to read input data from a CSV file. The geocoding is executed using the SLA OneMap API. The httr package’s HTTP call functions then send individual records to the OneMap geocoding server.
The geocoding operation results in two data frames: found
for successfully geocoded records and not_found
for unsuccessful ones. The found
data table is merged with the initial CSV data table using a unique identifier (POSTAL) and saved as a new CSV file named found
.
Code
<- "https://www.onemap.gov.sg/api/common/elastic/search"
url
<- read_csv("../data/aspatial/Generalinformationofschools.csv")
csv <- csv$postal_code
postcodes
<- data.frame()
found <- data.frame()
not_found
for(postcode in postcodes){
<-list('searchVal' = postcode, 'returnGeom'='Y', 'getAddrDetails'='Y', 'pageNum' = '1')
query <- GET(url, query=query)
res
if((content(res)$found)!=0)
<-rbind(found, data.frame(content(res))[4:13])
foundelse {
= data.frame(postcode)
not_found
}
}
glimpse(found)
Rows: 345
Columns: 10
$ results.SEARCHVAL <chr> "THE LEARNING HARBOUR @ ADMIRALTY PRIMARY SCHOOL", "…
$ results.BLK_NO <chr> "11", "31", "10", "751", "100", "2A", "31", "19", "1…
$ results.ROAD_NAME <chr> "WOODLANDS CIRCLE", "WOODLANDS CRESCENT", "YISHUN ST…
$ results.BUILDING <chr> "THE LEARNING HARBOUR @ ADMIRALTY PRIMARY SCHOOL", "…
$ results.ADDRESS <chr> "11 WOODLANDS CIRCLE THE LEARNING HARBOUR @ ADMIRALT…
$ results.POSTAL <chr> "738907", "737916", "768643", "768928", "579646", "1…
$ results.X <chr> "24315.9398124339", "24559.0472937012", "27958.13714…
$ results.Y <chr> "47135.3542042952", "47504.7873554379", "46096.26276…
$ results.LATITUDE <chr> "1.44254963931583", "1.44589068910993", "1.433152715…
$ results.LONGITUDE <chr> "103.800213682734", "103.802398196596", "103.8329424…
- read_csv from readr package reads a CSV file into R, converting it to a data frame.
- GET from httr package sends an HTTP GET request to a specified URL. In this code, it’s used to query a web API for each postcode.
- content from httr package extracts content from a response object returned by
GET
. - rbind from base R combines data frames by rows. Here, it’s used to append rows to
found
ornot_found
based on the API response. - A for loop is used to iterate over
postcodes
and make API requests for each postcode. - Conditional logic (
if...else
) checks if thefound
key in the API response is non-zero (indicating successful location finding) to decide whether to append tofound
ornot_found
. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
From previous in-class exercise, we already know that the not found data consist of Zhenghua Secondary School. Therefore, the following code will merge the data from previous process, then manually input the latitude and longitude data of the school.
Code
= merge(csv, found, by.x = 'postal_code', by.y = 'results.POSTAL', all = TRUE)
schools
# manually add the Zhenghua Secondary School data
$school_name == "ZHENGHUA SECONDARY SCHOOL", "results.LATITUDE"] <- 1.3887
schools[schools$school_name == "ZHENGHUA SECONDARY SCHOOL", "results.LONGITUDE"] <- 103.7652
schools[schools
# check the output
glimpse(schools)
Rows: 350
Columns: 40
$ postal_code <chr> "088256", "099138", "099757", "099840", "109100", "…
$ school_name <chr> "CANTONMENT PRIMARY SCHOOL", "CHIJ ST. THERESA'S CO…
$ url_address <chr> "http://www.cantonmentpri.moe.edu.sg", "http://www.…
$ address <chr> "1 Cantonment Close", "160 LOWER DELTA ROAD", "…
$ telephone_no <chr> "65119555", "64775777", "62730096", "62733937", "62…
$ telephone_no_2 <chr> "na", "na", "na", "na", "na", "na", "na", "na", "na…
$ fax_no <chr> "65119556", "64775700", "62731710", "62763083", "62…
$ fax_no_2 <chr> "na", "na", "na", "na", "na", "na", "na", "na", "na…
$ email_address <chr> "cantonment_ps@moe.edu.sg", "CHIJSTCS@MOE.EDU.SG", …
$ mrt_desc <chr> "Tanjong Pagar Outram Park", "HARBOURFRONT MRT, TIO…
$ bus_desc <chr> "75, 167, 196", "65, 121, 123, 123M, 124, 131, 131M…
$ principal_name <chr> "MRS MANOKARA SUGUNAVATHI", "MDM TAN MEI MEI JENNY"…
$ first_vp_name <chr> "MRS AUDREA CHIN", "MDM ONG LEE LEE", "MS NG CHIOU …
$ second_vp_name <chr> "MISS CHENG SHIN MIIN", "MISS KUO ZHAOYAN, FELICIA"…
$ third_vp_name <chr> "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NU…
$ fourth_vp_name <chr> "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NU…
$ fifth_vp_name <chr> "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NU…
$ sixth_vp_name <chr> "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NU…
$ dgp_code <chr> "BUKIT MERAH", "BUKIT MERAH", "BUKIT MERAH", "BUKIT…
$ zone_code <chr> "SOUTH", "SOUTH", "SOUTH", "SOUTH", "SOUTH", "SOUTH…
$ type_code <chr> "GOVERNMENT SCHOOL", "GOVERNMENT-AIDED SCH", "GOVER…
$ nature_code <chr> "CO-ED SCHOOL", "GIRLS' SCHOOL", "GIRLS' SCHOOL", "…
$ session_code <chr> "SINGLE SESSION", "SINGLE SESSION", "SINGLE SESSION…
$ mainlevel_code <chr> "PRIMARY", "SECONDARY", "PRIMARY", "PRIMARY", "PRIM…
$ sap_ind <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Ye…
$ autonomous_ind <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No…
$ gifted_ind <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Ye…
$ ip_ind <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No…
$ mothertongue1_code <chr> "Chinese", "Chinese", "Chinese", "Chinese", "Chines…
$ mothertongue2_code <chr> "Malay", "Malay", "Malay", "Malay", "Malay", "Malay…
$ mothertongue3_code <chr> "Tamil", "Tamil", "Tamil", "Tamil", "Tamil", "na", …
$ results.SEARCHVAL <chr> "KIDZ TREEHOUSE @ CANTONMENT", "CHIJ SAINT THERESA'…
$ results.BLK_NO <chr> "1", "160", "1", "1", "91", "147", "301", "50", "30…
$ results.ROAD_NAME <chr> "CANTONMENT CLOSE", "LOWER DELTA ROAD", "BUKIT TERE…
$ results.BUILDING <chr> "KIDZ TREEHOUSE @ CANTONMENT", "CHIJ SAINT THERESA'…
$ results.ADDRESS <chr> "1 CANTONMENT CLOSE KIDZ TREEHOUSE @ CANTONMENT SIN…
$ results.X <chr> "28748.1620587641", "26789.3781491434", "27402.9654…
$ results.Y <chr> "28659.9995642845", "28647.4426490944", "28579.8478…
$ results.LATITUDE <chr> "1.27546534984202", "1.27535177510054", "1.27474048…
$ results.LONGITUDE <chr> "103.840041087946", "103.822440701642", "103.827954…
- merge from base R combines two data frames by matching rows based on specified columns. In this code,
csv
andfound
are merged usingpostal_code
fromcsv
andresults.POSTAL
fromfound
, with theall = TRUE
option to include all rows from both data frames. - Manual data assignment is used to add specific latitude and longitude values for “ZHENGHUA SECONDARY SCHOOL” using base R’s subsetting and assignment operations.
- glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
To standardize the geospatial reference, we need to set the CRS code to 3414 based on the latitude and langitude values. The following code will execute it. Simultaneously, the code will also visualize the distribution of Schools across Singapore.
Code
<- schools %>%
schools_sf rename(
latitude = "results.LATITUDE",
longitude = "results.LONGITUDE"
%>%
) select(
postal_code,
school_name,
latitude,
longitude%>%
) st_as_sf(
coords = c("longitude", "latitude"),
crs=4326
%>%
) st_transform(
crs = 3414
)
# visualize the output
tm_shape(mpsz)+
tm_polygons(col = 'white', alpha = 0.01) +
tm_shape(schools_sf) +
tm_dots(col = 'lightgreen',
id = 'building') +
tm_layout(main.title = 'Schools Distribution Map', main.title.position = "center")
- rename from dplyr package changes the names of specific columns in a data frame for clarity. Here, it renames columns in
schools
tolatitude
andlongitude
. - select from dplyr package subsets specific columns from a data frame, retaining only
postal_code
,school_name
,latitude
, andlongitude
. - st_as_sf from sf package converts a data frame to a simple features (sf) object, specifying the coordinates for spatial data.
- st_transform from sf package transforms the coordinate reference system (CRS) of the sf object.
- tm_shape from tmap package prepares spatial data for plotting, used here for
mpsz
andschools_sf
. - tm_polygons adds a layer of polygons to the map, representing
mpsz
. - tm_dots adds a layer of dots to the map, representing
schools_sf
. - tm_layout customizes the layout of the map, including the main title and its position.
- This code snippet creates a thematic map showing the distribution of schools over a map with minimal polygon representation.
3 Data Wrangling
In this part, the following code will create honeycomb grid with hexagons with a distance of 375m from the center to the midpoint of the edge as the traffic analysis zone (TAZ). These hexagons will be the zones for the analysis. Simultaneously, the code will also intersect the grid with the bus stop data, and filter out grid that does not have any bus stop.
Code
# Create hexagonal grid based on bus stop locations
<- st_make_grid(busstop,
hexagonal_grid cellsize = 750,
what = "polygons",
square = FALSE)
# Convert hexagonal grid to spatial dataframe
<- st_sf(hex_grid = hexagonal_grid) %>%
hex_grid_sf mutate(hexagon_id = 1:length(lengths(hexagonal_grid)))
# Count the number of bus stops within each hexagon
$num_bus_stops = lengths(st_intersects(hex_grid_sf, busstop))
hex_grid_sf
# Filter hexagons with at least one bus stop
<- filter(hex_grid_sf, num_bus_stops > 0)
hexagons_with_bus_stops
# check the output
glimpse(hexagons_with_bus_stops)
Rows: 834
Columns: 3
$ hex_grid <POLYGON [m]> POLYGON ((3970.122 27348.13..., POLYGON ((4345.1…
$ hexagon_id <int> 23, 44, 46, 66, 67, 68, 86, 87, 88, 89, 90, 109, 110, 11…
$ num_bus_stops <int> 1, 1, 2, 1, 4, 1, 1, 1, 4, 2, 1, 3, 2, 5, 2, 1, 1, 5, 3,…
- st_make_grid from sf package creates a grid over a spatial object (
busstop
). Here, it generates a hexagonal grid with a specified cell size, forming polygons instead of squares. - st_sf from sf package converts the hexagonal grid into an
sf
(simple features) object. - mutate from dplyr package is used to add new columns to a data frame or modify existing ones. Here, it’s used to create a
hexagon_id
column. - lengths from base R calculates the lengths of the elements in a list. It’s used here to assign IDs to each hexagon.
- st_intersects from sf package finds the intersection between two spatial objects, in this case, between each hexagon and the bus stops.
- filter from dplyr package is used to retain rows based on a specified condition. Here, it filters hexagons that contain at least one bus stop.
- glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
Next, we will visualize the distribution of bus stop across Singapore.
Code
# Plot the number of bus stops per hexagon with a color gradient and legend
tm_shape(hexagons_with_bus_stops) +
tm_borders() +
tm_fill("num_bus_stops",
title = "Bus Stop Density",
style = "jenks",
palette = "YlOrRd",
legend.show = TRUE) +
tm_layout(main.title = 'Bus Stop Density in Hexagonal Grid',
main.title.position = "center",
legend.position = c("right", "top"))
- st_make_grid from sf package is used to create a grid over a spatial object (
busstop
). Here, it generates a hexagonal grid with a specified cell size. - st_sf from sf package converts the hexagonal grid into an
sf
(simple features) object. - mutate from dplyr package is used to add new columns to a data frame or modify existing ones. Here, it’s used to create a
hexagon_id
column. - lengths from base R calculates the lengths of the elements in a list. It’s used here to assign IDs to each hexagon.
- st_intersects from sf package finds the intersection between two spatial objects, in this case, between each hexagon and the bus stops.
- filter from dplyr package is used to retain rows based on a specified condition. Here, it filters hexagons that contain at least one bus stop.
- glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
In this step, the following code will join the bus stop and hexagon data, and filter out only the required columns for following sections.
Code
# Perform a spatial join
<- st_join(busstop, hexagons_with_bus_stops, by = NULL, join = st_within)
busstop_with_hex_info
# Select the relevant columns
<- busstop_with_hex_info %>%
busstop_with_hex_info select(BUS_STOP_N, BUS_ROOF_N, LOC_DESC, hexagon_id, geometry) %>%
mutate(
BUS_STOP_N = as.factor(BUS_STOP_N)
)
# Display the resulting data
glimpse(busstop_with_hex_info)
Rows: 5,144
Columns: 5
$ BUS_STOP_N <fct> 22069, 32071, 44331, 96081, 11561, 66191, 23389, 54411, 285…
$ BUS_ROOF_N <chr> "B06", "B23", "B01", "B05", "B05", "B03", "B02A", "B02", "B…
$ LOC_DESC <chr> "OPP CEVA LOGISTICS", "AFT TRACK 13", "BLK 239", "GRACE IND…
$ hexagon_id <int> 573, 560, 977, 2129, 1159, 1543, 509, 1502, 660, 2150, 448,…
$ geometry <POINT [m]> POINT (13576.31 32883.65), POINT (13228.59 44206.38),…
- st_join from sf package performs a spatial join between two spatial objects. In this case, it joins
busstop
withhexagons_with_bus_stops
. Thejoin = st_within
argument specifies that bus stops are joined with hexagons in which they are located. - select from dplyr package subsets specific columns from the joined spatial data frame. This code retains columns like
BUS_STOP_N
,BUS_ROOF_N
,LOC_DESC
,hexagon_id
, andgeometry
. - mutate from dplyr package is used to add new variables or modify existing ones. Here, it converts
BUS_STOP_N
to a factor. - glimpse from dplyr package provides a transposed summary of the data frame, giving a quick look at its structure, including the types of columns and the first few entries in each column.
now, we will finally join the passenger trip data with the hex and bus stop data. considering that the data have origin and destination bus stop, we will also have hex for both.
Code
# Add origin_hex to odb10
<- odb10 %>%
odb_hex left_join(busstop_with_hex_info %>% select(BUS_STOP_N, hexagon_id),
by = c("ORIGIN_PT_CODE" = "BUS_STOP_N")) %>%
rename(origin_hex = hexagon_id)
# Add destination_hex to odb10
<- odb_hex %>%
odb_hex left_join(busstop_with_hex_info %>% select(BUS_STOP_N, hexagon_id),
by = c("DESTINATION_PT_CODE" = "BUS_STOP_N")) %>%
rename(destination_hex = hexagon_id)
# Remove additional geometry columns
<- odb_hex %>%
odb_hex select(-contains("geometry."))
# Convert hex id to factor
<- odb_hex %>%
odb_hex mutate(
origin_hex = as.factor(origin_hex),
destination_hex = as.factor(destination_hex)
)
# check the output
glimpse(odb_hex)
Rows: 242,208
Columns: 5
Groups: ORIGIN_PT_CODE [5,029]
$ ORIGIN_PT_CODE <fct> 01012, 01012, 01012, 01012, 01012, 01012, 01012, 0…
$ DESTINATION_PT_CODE <fct> 01112, 01113, 01121, 01211, 01311, 07371, 60011, 6…
$ TRIPS <dbl> 290, 118, 77, 118, 165, 14, 30, 16, 35, 26, 2, 8, …
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 14…
$ destination_hex <fct> 1496, 1496, 1538, 1538, 1559, 1559, 1539, 1581, 16…
- left_join from dplyr package merges two data frames by matching values in specified columns. Here, it’s used twice to merge
busstop_with_hex_info
withodb10
, first for origin and then for destination bus stops, based on matching bus stop codes. - select from dplyr package subsets specific columns from a data frame. It’s used to select
BUS_STOP_N
andhexagon_id
frombusstop_with_hex_info
. - rename from dplyr package changes the names of specific columns in a data frame. In this code,
hexagon_id
is renamed toorigin_hex
anddestination_hex
. - contains within
select(-contains("geometry."))
is a helper function from dplyr used to remove columns that contain a specific string ("geometry."
in this case). - mutate from dplyr package is used to convert
origin_hex
anddestination_hex
to factors. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
Before going into the next step, the following code will firstly make sure that there are no duplicates in the dataset.
Code
if_else(n_distinct(odb_hex) == nrow(odb_hex), "no duplicates detected", "possible duplicates detected")
[1] "no duplicates detected"
- n_distinct from dplyr package calculates the number of unique values in a vector. Here, it’s used to count the unique values in the entire
odb_hex
data frame. - nrow from base R returns the number of rows in a data frame. Here, it’s used to get the total number of rows in
odb_hex
. - if_else from dplyr package performs a vectorized conditional operation. In this code, it checks if the number of unique values in
odb_hex
equals the total number of rows. If they are equal, it returns “no duplicates detected”; otherwise, it returns “possible duplicates detected”.
Next, using the following code, we will build the O-D matrix which represent various which aggregate the trips on a one on one origin vs destination basis.
Code
# Remove rows with missing values
<- odb_hex[complete.cases(odb_hex), ]
clean_odb
# Aggregate data based on origin_hex and destination_hex
<- clean_odb %>%
odb_flow group_by(origin_hex, destination_hex) %>%
summarise(trips = sum(TRIPS),
origin_hex = unique(origin_hex),
destination_hex = unique(destination_hex)) %>%
ungroup()
# check the output
glimpse(odb_flow)
Rows: 65,510
Columns: 3
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, 1603, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 218, 15…
- complete.cases from base R finds rows with no missing values (
NA
). Here, it’s used to filterodb_hex
and remove rows with missing data. - group_by from dplyr package groups the data by specified columns, here by
origin_hex
anddestination_hex
. - summarise from dplyr package calculates summary statistics for each group, here summing up
TRIPS
and getting unique values fororigin_hex
anddestination_hex
. - ungroup from dplyr package removes the grouping structure from the data frame.
- glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
After getting the origin-destination matrix, we need to calculate the distance between each origin and destination pair which will be used later for creating desire lines. The following code chunk will execute the required steps.
Code
# set busstop to spatial
<- as(busstop_with_hex_info, "Spatial")
busstop_sp
# calculate the distance
<- sp::spDists(busstop_sp, longlat = FALSE)
tp_dist
# add column names to the variable
<- busstop_sp$hexagon_id
hex_id_names colnames(tp_dist) <- paste0(hex_id_names)
rownames(tp_dist) <- paste0(hex_id_names)
# melt the table
<- reshape2::melt(tp_dist) %>%
dist rename(origin_hex = Var1,
destination_hex = Var2,
distance = value) %>%
mutate(origin_hex = as.factor(origin_hex),
destination_hex = as.factor(destination_hex))
# remove duplicates
<- distinct(dist, origin_hex, destination_hex, .keep_all = TRUE)
dist
# Perform left join to odb_flow with factor conversion
<- odb_flow %>%
odb_flow left_join(
%>% select(origin_hex, destination_hex, distance) %>%
dist mutate(across(c(origin_hex, destination_hex), as.character)),
by = c("origin_hex", "destination_hex")
%>%
) mutate(across(c(origin_hex, destination_hex), as.factor))
# check the output
glimpse(odb_flow)
Rows: 65,510
Columns: 4
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, 1603, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 218, 15…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.2822, …
- as from base R converts an object from one class to another, here converting
busstop_with_hex_info
to a Spatial object (Spatial
). - spDists from sp package calculates distances between points in a spatial object. The
longlat = FALSE
parameter indicates that the coordinates are in a planar projection. - paste0 from base R concatenates strings without a separator. It’s used to create column and row names based on
hexagon_id
. - melt from reshape2 package reshapes data from wide to long format. Here, it’s used to transform the distance matrix into a long format data frame.
- rename and mutate from dplyr package are used to rename columns and modify their values, respectively.
- distinct from dplyr package removes duplicate rows from a data frame.
- left_join from dplyr package merges two data frames based on matching values in specified columns.
- across from dplyr package is used in
mutate
to apply a function (here,as.character
oras.factor
) to multiple columns. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
This analysis is focused on the traffic between zones. Therefore the following code chunk will remove intra-zonal flows.
Code
<- odb_flow %>%
odb_flow filter(as.character(origin_hex) != as.character(destination_hex))
# check the output
glimpse(odb_flow)
Rows: 64,885
Columns: 4
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, 1603, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 218, 15…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.2822, …
- filter from dplyr package is used to retain rows in a data frame based on a specified condition. In this code, it filters the
odb_flow
data frame to keep only the rows whereorigin_hex
anddestination_hex
are different. - The
as.character
function from base R is used to ensure that the comparison betweenorigin_hex
anddestination_hex
is done as character strings, likely because these columns are factors or some other class. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
- This code snippet modifies the
odb_flow
data frame to exclude rows where the origin and destination hexagons are the same, then provides an overview of the resulting data.
The exclusion of intra-zonal flows from the Spatial Interaction Model calibration process is driven by the desire to focus on modeling and understanding interactions between different zones, without interference from flows within the same zone.
Intra-zonal flows, representing movements within a single zone, may not contribute significantly to the overall spatial interaction patterns that the model aims to capture. By removing intra-zonal flows, the analysis can concentrate on the dynamics and factors influencing interactions between distinct zones, providing a clearer and more interpretable representation of spatial relationships.
Including intra-zonal flows in the model might introduce unnecessary complexity or noise, potentially affecting the accuracy and interpretability of the model’s results. Therefore, excluding intra-zonal flows is a methodological choice to streamline the analysis and enhance the model’s ability to capture meaningful inter-zonal interactions.
4 Visualize the Desire Lines
The od2line function plays a pivotal role in transforming origin-destination data into a format suitable for generating flow lines on a map. This function requires three essential arguments: flow, zones, and zone_code.
flow: This is a data frame that encapsulates the origin-destination data. The first column of this data frame should align with the first column of the data present in the zones dataframe. In the context of the provided R code snippet, the variable ‘odb_flow’ is used as the flow data frame.
zones: Here, the origin and destination points of the travels are specified. This argument is crucial for mapping out the flow lines accurately. The actual geographical data, represented by the dataframe ‘hexagons_with_bus_stops,’ is employed as the zones dataframe in the given code.
zone_code: This parameter involves providing the name of the variable within the ‘zones’ dataframe that contains the unique identifiers (IDs) of the zones. In the presented R code, the variable ‘hexagon_id’ serves this purpose, linking the flow data with the corresponding geographical zones.
To demonstrate the practical implementation of the od2line function, the provided code snippet utilizes the ‘odb_flow’ as the origin-destination data, ‘hexagons_with_bus_stops’ as the geographical zones, and designates ‘hexagon_id’ as the variable containing zone IDs. The resulting flowline object is then explored using the ‘glimpse’ function, offering a concise overview of its structure and contents.
Code
<- od2line(flow = odb_flow,
flowline zones = hexagons_with_bus_stops,
zone_code = 'hexagon_id')
glimpse(flowline)
Rows: 64,885
Columns: 5
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, 1603, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 218, 15…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.2822, …
$ geometry <LINESTRING [m]> LINESTRING (29845.12 31028...., LINESTRING …
od2line
is function from [od](https://itsleeds.github.io/od/#:~:text=The%20od2line()%20function%2C%20for,movement%20between%20origins%20and%20destinations%3A&text=%23%3E%202%20LINESTRING%20(%2D1.518911%2053.79…) used for converting origin-destination data (odb_flow
) into spatial lines. It takes flow data and corresponding spatial zones (hexagons_with_bus_stops
), and uses a zone identifier (zone_code
set as ‘hexagon_id’) to create spatial lines representing the flow between origins and destinations.- glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
4.1 3rd Quantile Trips (175)
Considering the volume of the flowline, we will try to focus on the most important part of the flows. Firstly, we will try to filter on the 3rd Quantile. To do that, the following code will get the quantile of the trips.
Code
summary(flowline$trips)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 7.0 38.0 375.7 175.0 97602.0
- summary from base R provides a concise summary of a vector, list, data frame, or other R objects. In this code, it is used to produce a summary of the
trips
column in theflowline
data frame. - This summary typically includes the minimum, maximum, median, first quartile, third quartile, and mean of the numeric data in the
trips
column. - This code snippet is useful for getting a quick statistical overview of the
trips
data, such as understanding its distribution, central tendency, and spread.
We can see that the 3rd quantile is at 175 trips. The number will be used to plot the desire lines on the following code.
Code
tmap_mode('plot')
tmap_options(check.and.fix = TRUE)
tm_shape(mpsz) +
tm_polygons(col = 'white') +
tm_shape(hexagons_with_bus_stops) +
tm_polygons(alpha = 0.4,
col = 'gray') +
%>%
flowline filter(trips >= 175) %>%
tm_shape() +
tm_lines(col = 'coral',
lwd = "trips",
scale = c(0.1, 1, 2, 3, 4, 5, 6, 7),
alpha = 0.2)+
tm_layout(main.title = 'Weekday Morning Peak Flow for 3rd Quantile Trips', main.title.position = 'center')
- tmap_mode and tmap_options from tmap package are used to set up the mode and options for thematic maps.
- tm_shape is used to specify the spatial object to be visualized.
- tm_polygons is used to add polygons to the map.
- filter from dplyr package is used to filter rows in the
flowline
data frame wheretrips
is greater than or equal to 175. - tm_lines is used to add lines to the map.
- tm_layout is used to modify the layout of the map.
The central and eastern regions of Singapore show a denser accumulation of flows, indicated by the more intense coral coloration. This suggests higher bus trip volumes in these areas, possibly reflecting a greater demand for public transportation due to higher population density and commercial activity.
The visual spread of the flow lines, with varying line widths representing trip volumes, illustrates that the central region, likely encompassing the Central Business District (CBD), is a major hub of commuter activity, with thick lines indicating a high concentration of bus trips.
The eastern region, possibly including areas like Changi and the vicinity of the East Coast, shows a significant amount of flow as well. This could be attributed to the presence of residential areas, business parks, and the airport, all generating substantial public transport usage.
The map also shows a relatively lighter flow in the northern and western regions, suggesting either fewer bus trips or lower volumes within the 3rd quantile range.
4.2 99th Percentile Trips (6082)
Since filtering on 3rd quantile shows that the map is still hardly distinguishable, next we will try to use percentile. The following code will show the cutoff for the percentiles.
Code
quantile(flowline$trips, probs = seq(0, 1, 0.01), na.rm = TRUE)
0% 1% 2% 3% 4% 5% 6% 7%
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8% 9% 10% 11% 12% 13% 14% 15%
2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00
16% 17% 18% 19% 20% 21% 22% 23%
3.00 4.00 4.00 4.00 5.00 5.00 6.00 6.00
24% 25% 26% 27% 28% 29% 30% 31%
7.00 7.00 8.00 8.00 9.00 10.00 11.00 12.00
32% 33% 34% 35% 36% 37% 38% 39%
13.00 13.00 14.00 15.00 16.00 18.00 19.00 20.00
40% 41% 42% 43% 44% 45% 46% 47%
21.00 22.00 24.00 25.00 27.00 28.00 30.00 32.00
48% 49% 50% 51% 52% 53% 54% 55%
33.00 35.00 38.00 40.00 42.00 45.00 47.00 50.00
56% 57% 58% 59% 60% 61% 62% 63%
53.00 57.00 60.00 64.00 67.00 71.00 76.00 81.00
64% 65% 66% 67% 68% 69% 70% 71%
86.00 91.00 97.00 103.00 110.00 117.00 125.00 134.00
72% 73% 74% 75% 76% 77% 78% 79%
143.00 153.00 163.00 175.00 188.00 202.00 217.00 233.00
80% 81% 82% 83% 84% 85% 86% 87%
254.00 276.00 301.00 327.00 357.00 391.00 429.24 475.00
88% 89% 90% 91% 92% 93% 94% 95%
523.00 586.00 661.00 747.44 854.00 998.00 1170.00 1413.80
96% 97% 98% 99% 100%
1766.00 2335.44 3384.32 6082.16 97602.00
- quantile from stats package in base R computes sample quantiles for a given set of data. In this code, it’s used to calculate quantiles for the
trips
column in theflowline
data frame. probs = seq(0, 1, 0.01)
specifies the probabilities for which quantiles should be calculated, creating a sequence from 0 to 1 in increments of 0.01 (i.e., percentiles).na.rm = TRUE
indicates that NA (missing) values should be removed before the calculation.- This code snippet produces a detailed set of percentiles (from 0th to 100th, at every 1%) for the
trips
data, useful for understanding its distribution in greater detail, including identifying any potential outliers or patterns in the data spread.
We can see that distinguishable increase can be seen on the 99th percentile at 6082 trips. The number will be used to plot the desire lines on the following code.
Code
tmap_mode('plot')
tmap_options(check.and.fix = TRUE)
tm_shape(mpsz) +
tm_polygons(col = 'white') +
tm_shape(hexagons_with_bus_stops) +
tm_polygons(alpha = 0.4,
col = 'gray') +
%>%
flowline filter(trips >= 6082) %>%
tm_shape() +
tm_lines(col = 'coral',
lwd = "trips",
scale = c(0.1, 1, 2, 3, 4, 5, 6, 7))+
tm_layout(main.title = 'Weekday Morning Peak Flow for 99th Percentile Trips', main.title.position = 'center',
main.title.size = 1.2)
- tmap_mode from tmap package sets the mode for creating maps. Here, the mode is set to
'plot'
for static map rendering. - tmap_options configures options for tmap functions. The
check.and.fix = TRUE
option is used to automatically check and fix invalid polygons in spatial data. - tm_shape prepares spatial data for plotting, used here for
mpsz
andhexagons_with_bus_stops
. - tm_polygons adds polygon layers. For
mpsz
, polygons are filled with white color; forhexagons_with_bus_stops
, polygons are filled with gray color and partial transparency (alpha = 0.4
). - filter from dplyr package is used to subset
flowline
data based on the number of trips, retaining lines with trips of at least 6082. - tm_lines adds a layer of lines representing
flowline
. Line properties like color (col
), width (lwd
), and scaling are specified. - tm_layout customizes the map layout, including the main title and its style.
- This code snippet creates a thematic map that visualizes “Weekday Morning Peak Flow for 99th Percentile Trips”, combining polygonal maps of planning zones and hexagons with flow lines based on the specified criteria.
The major flow lines, represented in coral, indicate a concentration of the highest volume bus trips. These lines are more pronounced, showing that certain routes experience significantly higher bus traffic compared to others.
There is a noticeable pattern of high-volume bus traffic from the north towards the downtown area, indicating a substantial commuter influx into the central business district from northern residential areas.
Similarly, increased bus flows from the west towards downtown suggest a heavy commuting pattern, which could be due to residential-to-business daily travel.
The north-eastern region also exhibits a strong flow towards the central areas, again possibly reflecting the movement of residents to central workplaces or educational institutions.
Short trips within regions have become more visible at this percentile, indicating that there are specific short-distance routes that are heavily utilized and might be of interest for targeted transport planning.
4.3 3rd Quantile Distance (8923)
Next, we will try to show desire lines with a filter on the distance to see where are the longer distant travels happening. Firstly, we need to check the quantile cutoff with the following code.
Code
summary(flowline$distance)
Min. 1st Qu. Median Mean 3rd Qu. Max.
36.87 2975.46 5478.89 6347.13 8923.04 25292.04
- quantile from stats package in base R computes sample quantiles for a given set of data. In this code, it’s used to calculate quantiles for the
distance
column in theflowline
data frame. probs = seq(0, 1, 0.01)
specifies the probabilities for which quantiles should be calculated, creating a sequence from 0 to 1 in increments of 0.01 (i.e., percentiles).na.rm = TRUE
indicates that NA (missing) values should be removed before the calculation.- This code snippet produces a detailed set of percentiles (from 0th to 100th, at every 1%) for the
distance
data, useful for understanding its distribution in greater detail, including identifying any potential outliers or patterns in the data spread.
- summary from base R provides a concise summary of a vector, list, data frame, or other R objects. In this code, it is used to produce a summary of the
distance
column in theflowline
data frame. - This summary typically includes the minimum, maximum, median, first quartile, third quartile, and mean of the numeric data in the
distance
column. - This code snippet is useful for getting a quick statistical overview of the
distance
data, such as understanding its distribution, central tendency, and spread.
We can see that the 3rd quantile is at 8923 distant. The number will be used to plot the desire lines on the following code.
Code
tmap_mode('plot')
tmap_options(check.and.fix = TRUE)
tm_shape(mpsz) +
tm_polygons(col = 'white') +
tm_shape(hexagons_with_bus_stops) +
tm_polygons(alpha = 0.4,
col = 'gray') +
%>%
flowline filter(distance >= 8923) %>%
tm_shape() +
tm_lines(col = 'coral',
lwd = "trips",
scale = c(0.1, 1, 2, 3, 4, 5, 6, 7),
alpha = 0.2)+
tm_layout(main.title = 'Weekday Morning Peak Flowline for 3rd Quantile Distance', main.title.position = 'center',
main.title.size = 1.2)
- tmap_mode from tmap package sets the mode for creating thematic maps. In this code, it’s set to ‘plot’ to produce static maps.
- tmap_options from tmap package sets the global options for thematic maps. In this code, it’s used to enable the check and fix option, which automatically fixes invalid geometries.
- tm_shape from tmap package specifies the spatial data to be mapped. In this code, it’s used to map the
mpsz
andhexagons_with_bus_stops
data frames, which contain polygon geometries, and theflowline
data frame, which contains line geometries. - tm_polygons from tmap package adds polygons to the map. In this code, it’s used to fill the polygons with white and gray colors, and adjust the transparency with the alpha argument.
- tm_lines from tmap package adds lines to the map. In this code, it’s used to color the lines with coral, vary the line width with the
trips
variable, and scale the line width with the scale argument. - tm_layout from tmap package sets the layout of the map. In this code, it’s used to add a main title, position it at the center, and adjust its size.
The visualization indicates that longer-distance travel is a significant component of morning commuting, highlighting the importance of efficient transportation links from suburban areas to central regions.
The gray hexagonal overlay helps to provide context regarding the distribution of bus stops; however, the flow lines’ density makes it difficult to ascertain the exact starting and ending points of these longer commutes.
Although the map is crowded, the saturated areas of flow could signal potential bottlenecks or areas that may benefit from transportation infrastructure improvements, such as increased bus services or the development of express routes.
4.4 99th Percentile Distance (18587)
Since the previous filtering on 3rd quantile resulting in hardly distinguishable pattern, we will try to use percentile next. The following code will check what are the percentile for distance.
Code
quantile(flowline$distance, probs = seq(0, 1, 0.01), na.rm = TRUE)
0% 1% 2% 3% 4% 5%
36.87007 522.53556 703.08425 842.92091 957.30393 1076.69574
6% 7% 8% 9% 10% 11%
1191.59355 1294.46529 1395.65614 1489.93693 1590.51016 1692.12325
12% 13% 14% 15% 16% 17%
1788.92064 1884.42267 1968.51790 2066.41607 2153.43370 2248.29253
18% 19% 20% 21% 22% 23%
2338.39987 2428.43872 2528.60989 2612.44437 2706.87957 2792.76077
24% 25% 26% 27% 28% 29%
2875.97264 2975.46354 3062.97268 3156.09125 3248.58762 3341.38852
30% 31% 32% 33% 34% 35%
3436.60368 3532.15466 3619.70478 3714.09747 3821.74327 3915.36034
36% 37% 38% 39% 40% 41%
4013.05342 4111.42886 4211.00286 4309.25745 4407.09453 4506.11532
42% 43% 44% 45% 46% 47%
4606.54736 4724.02732 4829.68679 4923.53519 5029.76657 5148.01533
48% 49% 50% 51% 52% 53%
5256.28523 5366.38472 5478.89233 5590.89734 5703.79373 5819.80587
54% 55% 56% 57% 58% 59%
5944.54472 6059.26949 6179.22714 6300.95726 6428.67668 6545.52174
60% 61% 62% 63% 64% 65%
6669.27414 6806.63320 6922.99694 7069.83774 7213.24856 7348.42508
66% 67% 68% 69% 70% 71%
7493.32313 7632.98202 7789.55420 7938.62851 8100.13558 8257.52288
72% 73% 74% 75% 76% 77%
8421.55252 8580.78061 8745.64754 8923.04164 9097.35752 9283.90751
78% 79% 80% 81% 82% 83%
9487.10764 9677.10337 9869.40942 10077.52431 10281.94764 10486.38616
84% 85% 86% 87% 88% 89%
10700.11506 10930.16294 11188.95602 11451.48411 11717.97156 12036.64141
90% 91% 92% 93% 94% 95%
12378.97126 12746.11568 13121.55663 13560.13147 13987.01526 14526.64946
96% 97% 98% 99% 100%
15194.10259 15983.84859 17018.69635 18587.39427 25292.03624
- quantile from stats package in base R computes sample quantiles for a given set of data. In this code, it’s used to calculate quantiles for the
distance
column in theflowline
data frame. probs = seq(0, 1, 0.01)
specifies the probabilities for which quantiles should be calculated, creating a sequence from 0 to 1 in increments of 0.01 (i.e., percentiles).na.rm = TRUE
indicates that NA (missing) values should be removed before the calculation.- This code snippet produces a detailed set of percentiles (from 0th to 100th, at every 1%) for the
distance
data, useful for understanding its distribution in greater detail, including identifying any potential outliers or patterns in the data spread.
Following the previous filter, we also use 99th percentile at 18587 distance for the following plot.
Code
tmap_mode('plot')
tmap_options(check.and.fix = TRUE)
tm_shape(mpsz) +
tm_polygons(col = 'white') +
tm_shape(hexagons_with_bus_stops) +
tm_polygons(alpha = 0.4,
col = 'gray') +
%>%
flowline filter(distance >= 18587) %>%
tm_shape() +
tm_lines(col = 'coral',
lwd = "trips",
scale = c(0.1, 1, 2, 3, 4, 5, 6, 7))+
tm_layout(main.title = 'Weekday Morning Peak Flowline for 99th Percentile Distance', main.title.position = 'center',
main.title.size = 1.2)
- tmap_mode from tmap package sets the mode for creating maps. Here, the mode is set to
'plot'
for static map rendering. - tmap_options configures options for tmap functions. The
check.and.fix = TRUE
option is used to automatically check and fix invalid polygons in spatial data. - tm_shape prepares spatial data for plotting, used here for
mpsz
andhexagons_with_bus_stops
. - tm_polygons adds polygon layers. For
mpsz
, polygons are filled with white color; forhexagons_with_bus_stops
, polygons are filled with gray color and partial transparency (alpha = 0.4
). - filter from dplyr package is used to subset
flowline
data based on distance, retaining lines with a distance of at least 18587 units. - tm_lines adds a layer of lines representing
flowline
. Line properties like color (col
), width (lwd
), and scaling are specified. - tm_layout customizes the map layout, including the main title and its style.
- This code snippet creates a thematic map that visualizes “Weekday Morning Peak Flowline for 99th Percentile Distance”, combining polygonal maps of planning zones and hexagons with flow lines based on the specified criteria.
There is a pronounced convergence of bus flows towards the downtown area from all directions, which indicates a significant influx of commuters heading to the central business district. This could reflect the centralized location of employment, educational institutions, and other key services in the city center.
The flow between the north and east regions also shows a heightened density, suggesting a well-traveled corridor that connects these areas. This could be indicative of important residential to commercial commuting patterns or the presence of specific transit routes that facilitate travel between these regions.
The map, with its dense coral lines, indicates that even at the 99th percentile for distance, there are numerous long-distance routes with substantial ridership, underlining the importance of these bus services in the overall transportation network.
4.5 Spread Across Decile of Trips
The last desire line map chart will try to see the spread of trips across decile. Firstly, we check the decile cutoff of trips using the following code.
Code
quantile(flowline$trips, probs = seq(0, 1, 0.1), na.rm = TRUE)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 2 5 11 21 38 67 125 254 661 97602
- quantile from stats package in base R computes sample quantiles for a given set of data. In this code, it’s used to calculate quantiles for the
distance
column in theflowline
data frame. probs = seq(0, 1, 0.01)
specifies the probabilities for which quantiles should be calculated, creating a sequence from 0 to 1 in increments of 0.01 (i.e., percentiles).na.rm = TRUE
indicates that NA (missing) values should be removed before the calculation.- This code snippet produces a detailed set of percentiles (from 0th to 100th, at every 1%) for the
distance
data, useful for understanding its distribution in greater detail, including identifying any potential outliers or patterns in the data spread.
Next, we define the breaks and plot the chart that will show the spread of trips across decile of cutoff (with an additional arbitrary cutoff on high increase in trip volume). Then, the following code will also assign the cutoff as a column in the flowline dataframe.
Code
<- flowline %>%
flowline mutate(
decile = cut(trips,
breaks = c(0, 2, 5, 11, 21, 38, 67, 125, 254, 661, 5000, Inf),
labels = c("<2", "2-5", "5-11", "11-21",
"21-38", "38-67", "67-125", "125-254",
"254-661", "661-5000", ">5000"),
ordered_result=TRUE
))
# check the output
glimpse(flowline)
Rows: 64,885
Columns: 6
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, 1603, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 218, 15…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.2822, …
$ geometry <LINESTRING [m]> LINESTRING (29845.12 31028...., LINESTRING …
$ decile <ord> 661-5000, 661-5000, 125-254, 254-661, 21-38, 38-67, 12…
- mutate from dplyr package is used to add new variables or modify existing ones in a data frame. In this code, it adds a
decile
column to theflowline
data frame. - cut from base R divides the range of a numeric vector (
trips
in this case) into intervals and codes the values according to which interval they fall. Thebreaks
parameter defines the interval boundaries, andlabels
provides labels for these intervals.ordered_result = TRUE
makes the result an ordered factor. - This code snippet categorizes the
trips
data into deciles based on specified break points and labels each interval accordingly. - glimpse from dplyr package provides a quick overview of the data frame’s structure, including column types and the first few entries in each column.
Based on the new ordinal column of decile group, we can plot the following map chart that shows the spread of trips volume.
Code
<- tm_shape(mpsz) +
trips_spread tm_fill(col = "white") +
tm_borders(col = "black", lwd = .5) +
tm_shape(flowline) +
tm_lines(lwd = "trips", scale = 1.5, col = "coral", alpha = .7) +
tm_layout(title = "Weekday Morning Peak Traffic Flow", title.position = c("right", "top")) +
tm_facets(along = "decile", free.coords = FALSE)
# Save animation as gif
tmap_animation(trips_spread, "../images/trips_spread.gif", loop = TRUE, delay = 300,
outer.margins = NA, restart.delay=500)
for the first 8 decile, the trips slightly change but still more dense on central. on the extra category of >5000, north-downtown, west-downtown, north-east, and short trip becomes more visible
- tm_shape from tmap package prepares spatial data for plotting. It’s used for both
mpsz
andflowline
datasets. - tm_fill adds a layer of filled polygons, and tm_borders adds polygon borders.
- tm_lines adds a layer of lines, with properties (like width and color) set based on the
trips
variable. - tm_layout customizes the layout of the map, including the title and its position.
- tm_facets creates multiple panels (facets) in the map based on a variable, here “decile”.
- tmap_animation from tmap package creates an animation from a series of thematic maps. It’s used to save the animation of
trips_spread
as a GIF file, with specified loop, delay, margins, and restart delay settings. - This code creates an animated map visualizing “Weekday Morning Peak Traffic Flow” across different deciles, saved as a GIF file.
Initial Deciles (<2 to 125-254): In the earlier frames representing the lower deciles, the trip volumes show gradual changes, with a consistent pattern of denser traffic in the central region. This likely reflects a stable flow of bus trips in the heart of the city, where there is a concentration of work, education, and commercial activities.
Higher Deciles (254-661 to >5000): As the deciles increase, the traffic flow becomes more pronounced, particularly in routes leading from the north, west, and northeast towards downtown. These routes exhibit significant growth in trip volumes, highlighting key commuter corridors.
Extreme Volume Category (>5000): In the final frames, where the cutoff is for volumes greater than 5000 trips, the visualization emphasizes the most heavily utilized routes. The north to downtown, west to downtown, northeast, and certain short-distance routes stand out more distinctly, showing where the highest demand for bus transport exists.
5 Assembling Variables
To better design our Spatial Interaction Model performance, we need to assemble the variables that. In the gravity model, those variables include distance, and push and pull factors.
5.1 Push Factors
For the push factors we choose counts of HDB, station, train exit, and bus stop in the zone. Additionally we also try to estimate proxy population data using the HDB sales data.
HDB counts: in a zone serve as a proxy for residential density. Residential areas are likely to generate a substantial number of bus trips, as residents use buses for daily commuting, shopping, and other activities. Higher HDB counts may indicate higher population density and, subsequently, increased demand for bus services.
Station Count: The count of stations within a zone is crucial, especially if these stations connect to other modes of transportation or are busy hubs. Stations can act as both push and pull factors. Residents in a zone with multiple stations might use buses to access these stations, and conversely, individuals arriving at stations might use buses for the next leg of their journey.
Train Exit Count: Similar to stations, the count of train exits represents points of convergence where commuters might either board buses to reach their final destination or disembark from buses to access train services. This bidirectional interaction makes train exits a significant factor in predicting bus trip volumes.
Bus Stop Count: The count of bus stops is a straightforward push factor. More bus stops in a zone imply greater accessibility and convenience for residents, encouraging higher bus usage. Bus stops are critical nodes for the initiation of bus trips, and their density reflects the local transportation network’s coverage.
Proxy Population Data using HDB Sales: While not a direct count of population, HDB sales data provides an indirect measure of population changes over time. Increased HDB sales may indicate population growth or influx, affecting the demand for public transportation. It serves as a dynamic proxy for the population, capturing changes in residency patterns and influencing bus trip volumes.
The following code will create a dataframe to hold all the factors before merged into the main dataframe. Then it assign all the common push factors count to the dataframe.
Code
<- hexagons_with_bus_stops %>%
factors_holder rename(push_num_bus_stops = num_bus_stops)
# define function to add push poi counts columns
<- function(factors_holder, poi_datasets) {
add_push_poi_counts # Loop through each POI dataset
for (poi_name in poi_datasets) {
# Add a new column with the count using st_intersects and lengths
paste0("push_", poi_name, "_count")]] <-
factors_holder[[ifelse(
lengths(st_intersects(factors_holder, get(poi_name))) == 0,
0.99,
lengths(st_intersects(factors_holder, get(poi_name)))
)
}
# Return the updated factors_holder dataframe
return(factors_holder)
}
# List of POI dataset names
<- c("station", "trainexit", "hdb_sf")
push_poi_datasets
# Call the function
<- add_push_poi_counts(factors_holder, push_poi_datasets)
factors_holder
# check the output
glimpse(factors_holder)
Rows: 834
Columns: 6
$ hexagon_id <int> 23, 44, 46, 66, 67, 68, 86, 87, 88, 89, 90, 109, …
$ push_num_bus_stops <int> 1, 1, 2, 1, 4, 1, 1, 1, 4, 2, 1, 3, 2, 5, 2, 1, 1…
$ hex_grid <POLYGON [m]> POLYGON ((3970.122 27348.13..., POLYGON (…
$ push_station_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ push_trainexit_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ push_hdb_sf_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
- mutate from dplyr package is used to add new variables or modify existing ones in a data frame. Here, it creates a
capacity
column based on a calculation involving various room types. - select from dplyr package is used to subset specific columns in the data frame.
- st_join from sf package performs a spatial join between two spatial objects, joining
hdb_capacity
withhexagons_with_bus_stops
based on their spatial relationship (st_within
). - group_by and summarise from dplyr package are used for grouping data and calculating summary statistics, here summing up
capacity
for eachhexagon_id
. - st_drop_geometry from sf package is used to remove the geometry column from a spatial object.
- left_join from dplyr package merges two data frames based on matching values in a specified column.
- mutate_at from dplyr package is used to apply a function to multiple columns that match a condition (here, columns that contain “push_est_pop”).
- coalesce from dplyr package replaces
NA
values with a specified value (0.99 in this case). - glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
Next, we will try to approximate population of the location, based on estimated hdb capacity, and assign it as a push factor as well.
Code
<- hdb_sf %>%
hdb_capacity mutate(capacity = `1room_sold` *1 +
`2room_sold` * 2+
`3room_sold` * 3+
`4room_sold` * 4+
`5room_sold` * 5+
* 4+
exec_sold * 6+
multigen_sold *1+
studio_apartment_sold `1room_rental` * 1+
`2room_rental` * 2+
`3room_rental` * 3+
* 2) %>%
other_room_rental select(blk_no, geometry, capacity)
# get hexagon_id for hdb, then sum the capacity
<- st_join(hdb_capacity, hexagons_with_bus_stops, by = NULL, join = st_within) %>%
hdb_capacity group_by(hexagon_id) %>%
summarise(push_est_pop = sum(capacity)) %>%
st_drop_geometry()
# Convert hexagon_id to character in both dataframes
<- factors_holder %>% mutate(hexagon_id = as.character(hexagon_id))
factors_holder <- hdb_capacity %>% mutate(hexagon_id = as.character(hexagon_id))
hdb_capacity
# Left join factors_holder and hdb_capacity by hexagon_id
<- left_join(factors_holder, hdb_capacity, by = "hexagon_id") %>%
factors_holder mutate(hexagon_id = as.factor(hexagon_id)) %>% # Convert back to factor
mutate_at(vars(contains("push_est_pop")), list(~coalesce(., 0.99))) # Fill missing values with 0.99
glimpse(factors_holder)
Rows: 834
Columns: 7
$ hexagon_id <fct> 23, 44, 46, 66, 67, 68, 86, 87, 88, 89, 90, 109, …
$ push_num_bus_stops <int> 1, 1, 2, 1, 4, 1, 1, 1, 4, 2, 1, 3, 2, 5, 2, 1, 1…
$ push_station_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ push_trainexit_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ push_hdb_sf_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ push_est_pop <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0…
$ hex_grid <POLYGON [m]> POLYGON ((3970.122 27348.13..., POLYGON (…
- mutate from dplyr package is used to add new variables or modify existing ones in a data frame. Here, it creates a
capacity
column based on a calculation involving various room types. - select from dplyr package is used to subset specific columns in the data frame.
- st_join from sf package performs a spatial join between two spatial objects, joining
hdb_capacity
withhexagons_with_bus_stops
based on their spatial relationship (st_within
). - group_by and summarise from dplyr package are used for grouping data and calculating summary statistics, here summing up
capacity
for eachhexagon_id
. - st_drop_geometry from sf package is used to remove the geometry column from a spatial object.
- left_join from dplyr package merges two data frames based on matching values in a specified column.
- mutate_at from dplyr package is used to apply a function to multiple columns that match a condition (here, columns that contain “push_est_pop”).
- coalesce from dplyr package replaces
NA
values with a specified value (0.99 in this case). - glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
To enhance our dataset with information from Housing Development Board (HDB) records, it’s essential to recognize that HDB residential blocks are designed to house a varying number of residents. This diversity is due to the different types of flats available, each intended to cater to different family sizes and living arrangements. To accurately gauge the population within each HDB block, we employ a methodology that combines the count of dwelling units with an estimated occupancy rate.
The occupancy rate is derived based on standard family compositions associated with each flat type as detailed on the HDB’s types of flats page, which outlines the typical configurations offered to residents. Here’s how we estimate the population for each type of flat:
1-room flats (sold or rental): Generally occupied by a single resident.
2-room flats (sold or rental): Typically house two individuals, which may be a couple or two single persons sharing a space.
3-room flats (sold or rental): Commonly accommodate a small family unit, presumed to be two adults and one child.
4-room flats and executive flats (sold): Usually inhabited by a standard family of four members, such as two adults and two children.
5-room flats (sold): Are spacious enough for larger families, presumed to consist of two adults and three children.
Multi-generation flats (sold): Designed to support extended family living, these are estimated to house six individuals, including a pair of grandparents, a couple, and two children.
Studio apartments (sold): Intended for elderly residents living alone.
Other rental units: If the categorization is not explicit, a general assumption of two residents is applied.
5.2 Pull Factors
For the pull factors we choose counts of station, train exit, business, entertainment, F&B, leisure & recreation, retails, and schools in the zone. Additionally we also try to estimate proxy population data using the HDB sales data.
Counts of Stations: Stations act as major transportation nodes, serving as crucial points for commuters to access different modes of transportation. A higher count of stations in a zone suggests greater connectivity and accessibility, attracting more passengers to use buses for their onward journeys.
Counts of Train Exits: Similar to stations, train exits represent key points of arrival for commuters. The availability of multiple train exits in a zone indicates a higher likelihood of people disembarking from trains and subsequently using buses for the next leg of their journey.
Counts of Businesses: Business establishments contribute significantly to commuter traffic, especially during weekday morning peaks. Employees traveling to work generate demand for bus services. A higher count of businesses in a zone reflects increased economic activity and, consequently, a greater need for public transportation.
Counts of Entertainment Venues: Zones with more entertainment options tend to attract residents and visitors alike. The availability of entertainment venues can stimulate bus ridership, as individuals may utilize buses for leisure activities, contributing to passenger volume during specific time periods.
Counts of Food & Beverage (F&B) Establishments: F&B venues are essential attractors for local and visiting populations. Morning peak hours often witness a surge in commuters seeking breakfast or coffee on their way to work. The count of F&B establishments is indicative of potential bus ridership during these hours.
Counts of Leisure & Recreation Facilities: Similar to entertainment venues, leisure and recreation facilities contribute to the overall attractiveness of a zone. People traveling for recreational purposes may use buses to reach these destinations, contributing to passenger volume, especially during specific time frames.
Counts of Retail Establishments: Retail establishments influence daily commuting patterns as people travel to shop for various goods and services. Higher counts of retail outlets can imply increased footfall and bus usage for shopping purposes.
Counts of Schools: Schools play a pivotal role in shaping travel patterns, particularly during weekday mornings. The count of schools in a zone reflects the potential demand for buses, as students and staff rely on public transportation to reach educational institutions.
The following code will assign all the common pull factors count to the dataframe.
Code
# define function to add pull poi counts columns
<- function(factors_holder, poi_datasets) {
add_pull_poi_counts # Loop through each POI dataset
for (poi_name in poi_datasets) {
# Add a new column with the count using st_intersects and lengths
paste0("pull_", poi_name, "_count")]] <-
factors_holder[[ifelse(
lengths(st_intersects(factors_holder, get(poi_name))) == 0,
0.99,
lengths(st_intersects(factors_holder, get(poi_name)))
)
}
# Return the updated factors_holder dataframe
return(factors_holder)
}
# List of POI dataset names
<- c("station", "trainexit", "biz", "entertn", "fnb", "finance", "lnr", "retails", "schools_sf")
pull_poi_datasets
# Call the function
<- add_pull_poi_counts(factors_holder, pull_poi_datasets)
factors_holder
glimpse(factors_holder)
Rows: 834
Columns: 16
$ hexagon_id <fct> 23, 44, 46, 66, 67, 68, 86, 87, 88, 89, 90, 109,…
$ push_num_bus_stops <int> 1, 1, 2, 1, 4, 1, 1, 1, 4, 2, 1, 3, 2, 5, 2, 1, …
$ push_station_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ push_trainexit_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ push_hdb_sf_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ push_est_pop <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ hex_grid <POLYGON [m]> POLYGON ((3970.122 27348.13..., POLYGON …
$ pull_station_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_trainexit_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_biz_count <dbl> 0.99, 5.00, 4.00, 1.00, 50.00, 27.00, 3.00, 3.00…
$ pull_entertn_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_fnb_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_finance_count <dbl> 0.99, 0.99, 0.99, 0.99, 1.00, 0.99, 0.99, 0.99, …
$ pull_lnr_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_retails_count <dbl> 0.99, 0.99, 0.99, 0.99, 5.00, 0.99, 0.99, 0.99, …
$ pull_schools_sf_count <dbl> 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
- The
add_pull_poi_counts
function is a custom-defined function. It is used to add new columns to thefactors_holder
data frame, each representing the count of points of interest (POIs) nearby. - The function loops through each POI dataset name provided in
poi_datasets
(a vector of dataset names like “station”, “trainexit”, etc.). - st_intersects from sf package checks for intersections between spatial objects. It’s used here to identify intersecting POIs for each hexagon.
- lengths from base R calculates the number of intersecting points for each hexagon.
- ifelse from base R is used to replace zero counts with a small number (0.99) for later analytical purposes.
- get from base R fetches the value of a named object (in this case, the POI datasets).
- paste0 from base R concatenates strings to create new column names.
- glimpse from dplyr package is used at the end to display the structure of the updated
factors_holder
data frame.
5.3 Final Dataset
After assembling all the pull and push factors, next we will merge the factors to the main dataset. The push factors will be merged by using origin_hex, while the pull factors will be merged by using destination_hex. The following code will execute the task.
Code
<- left_join(odb_flow, factors_holder %>% select(starts_with("push_"), hexagon_id), by = c("origin_hex" = "hexagon_id"))
final_df
<- left_join(final_df, factors_holder %>% select(starts_with("pull_"), hexagon_id), by = c("destination_hex" = "hexagon_id"))
final_df
<- final_df %>%
final_df select(-hex_grid.x, -hex_grid.y)
<- final_df %>%
final_df mutate(push_est_pop = ifelse(push_est_pop == 0, 0.99, push_est_pop))
# Check the output
glimpse(final_df)
Rows: 64,885
Columns: 18
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 2…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.…
$ push_num_bus_stops <int> 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, …
$ push_station_count <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
$ push_trainexit_count <dbl> 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, …
$ push_hdb_sf_count <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
$ push_est_pop <dbl> 1079, 1079, 1079, 1079, 1079, 1079, 1079, 1079, …
$ pull_station_count <dbl> 4.00, 1.00, 2.00, 1.00, 1.00, 0.99, 1.00, 1.00, …
$ pull_trainexit_count <dbl> 6.00, 0.99, 3.00, 2.00, 0.99, 0.99, 1.00, 2.00, …
$ pull_biz_count <dbl> 19.00, 15.00, 20.00, 25.00, 23.00, 4.00, 2.00, 4…
$ pull_entertn_count <dbl> 9.00, 2.00, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_fnb_count <dbl> 56.00, 65.00, 42.00, 1.00, 1.00, 1.00, 0.99, 1.0…
$ pull_finance_count <dbl> 43.00, 26.00, 8.00, 16.00, 1.00, 0.99, 2.00, 6.0…
$ pull_lnr_count <dbl> 9.00, 13.00, 9.00, 5.00, 1.00, 0.99, 2.00, 1.00,…
$ pull_retails_count <dbl> 1669.00, 749.00, 235.00, 334.00, 165.00, 30.00, …
$ pull_schools_sf_count <dbl> 0.99, 1.00, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
- left_join from dplyr package merges two data frames based on matching values in specified columns. Here, it’s used twice: first to join
odb_flow
withpush
columns fromfactors_holder
, and then to joinpull
columns to the resulting data frame. - select from dplyr package is used to subset specific columns from a data frame.
starts_with
is a helper used withinselect
to choose columns that start with certain strings. - The second
select
statement with-hex_grid.x, -hex_grid.y
removes unwanted columns fromfinal_df
. - mutate from dplyr package is used to create or modify columns in a data frame. Here, it modifies
push_est_pop
to replace zero values with 0.99. - ifelse from base R applies a conditional test to each element of a vector.
- glimpse from dplyr package provides a transposed summary of the data frame, giving a quick look at its structure, including the types of columns and the first few entries in each column.
To avoid redundant processing on running this qmd file or in rendering it, we can save the final processed data to rds file, then import it on the later step. The following code will write the rds file.
Code
write_rds(final_df, "../data/rds/final_df_the2.rds")
- write_rds from base R saves an R object (in this case, the
final_df
data frame) to a file in R’s binary RDS format. This format is specific to R and allows for efficient storage of R objects. - The first argument is the object to be saved (
final_df
), and the second argument is the file path where the object will be saved ("../data/rds/final_df_the2.rds"
). - The
#| eval: false
at the beginning of the code is likely an instruction for an R Markdown document or similar tool, indicating that this line of code should not be evaluated when the document is run. - This code snippet saves the
final_df
data frame as an RDS file for future use, providing a convenient way to store and later reload the data frame in its current state.
The RDS format in R is a specialized file format used for storing single R objects. It’s a compact binary format that preserves the exact structure of the saved object, including metadata. This format is particularly efficient for saving and loading objects in R, as it ensures that the object is restored exactly as it was when saved, without any need for reformatting or reassembling data.
Using the RDS format is beneficial because it allows for fast and efficient storage and retrieval of R objects, making it ideal for situations where you need to save an object and reload it later in another session without any loss of information. The functions write_rds
and read_rds
(or writeRDS
and readRDS
in base R) are used for saving to and reading from this format, respectively. RDS is especially useful for large datasets or complex objects where preservation of structure is crucial.
6 Spatial Interaction Model
As explained in Overview section, the Spatial Interaction Model used here are various type of the Gravity Model. Firstly, based on the previous saved data, this will be the checkpoint on importing the final dataset for the modelling.
Code
<- read_rds("../data/rds/final_df_the2.rds")
final_df glimpse(final_df)
Rows: 64,885
Columns: 18
$ origin_hex <fct> 1474, 1474, 1474, 1474, 1474, 1474, 1474, 1474, …
$ destination_hex <fct> 1496, 1538, 1539, 1559, 1581, 1582, 1601, 1602, …
$ trips <dbl> 1091, 766, 230, 311, 32, 63, 153, 77, 29, 127, 2…
$ distance <dbl> 337.7979, 1089.6612, 1816.6628, 1553.0464, 2308.…
$ push_num_bus_stops <int> 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, …
$ push_station_count <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
$ push_trainexit_count <dbl> 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, …
$ push_hdb_sf_count <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
$ push_est_pop <dbl> 1079, 1079, 1079, 1079, 1079, 1079, 1079, 1079, …
$ pull_station_count <dbl> 4.00, 1.00, 2.00, 1.00, 1.00, 0.99, 1.00, 1.00, …
$ pull_trainexit_count <dbl> 6.00, 0.99, 3.00, 2.00, 0.99, 0.99, 1.00, 2.00, …
$ pull_biz_count <dbl> 19.00, 15.00, 20.00, 25.00, 23.00, 4.00, 2.00, 4…
$ pull_entertn_count <dbl> 9.00, 2.00, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
$ pull_fnb_count <dbl> 56.00, 65.00, 42.00, 1.00, 1.00, 1.00, 0.99, 1.0…
$ pull_finance_count <dbl> 43.00, 26.00, 8.00, 16.00, 1.00, 0.99, 2.00, 6.0…
$ pull_lnr_count <dbl> 9.00, 13.00, 9.00, 5.00, 1.00, 0.99, 2.00, 1.00,…
$ pull_retails_count <dbl> 1669.00, 749.00, 235.00, 334.00, 165.00, 30.00, …
$ pull_schools_sf_count <dbl> 0.99, 1.00, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, …
- read_rds from base R loads an R object saved in RDS format. In this code, it’s used to read the
final_df
data frame from a file located at"../data/rds/final_df_the2.rds"
. - glimpse from dplyr package provides a transposed summary of the data frame, offering a quick look at its structure, including the types of columns and the first few entries in each column.
- This code snippet loads
final_df
from an RDS file and provides an overview of its structure, which is useful for understanding the types and arrangement of data contained in the data frame after it has been reloaded.
Another thing to note before starting, is that the glm
model function that will be used does not have a built in R2 value calculation. Therefore the following code will build a function to calculate the R2.
Code
<- function(observed, estimated){
CalcRSquared <- cor(observed, estimated)
r <- r^2
R2
R2 }
- cor from stats R package is used to compute the correlation between
observed
andestimated
. In this code, it’s used to calculate the correlation coefficientr
. - The square of the correlation coefficient
r^2
is calculated to obtain the R-squared valueR2
, which is a measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination.
A Generalized Linear Model (GLM) is a statistical framework used for modeling relationships between a dependent variable and one or more independent variables. Unlike ordinary linear regression, GLM accommodates a broader range of data distributions, making it suitable for situations where the response variable follows a non-normal distribution.
In R Studio, the glm
function is utilized to fit a GLM. It allows you to specify the form of the model, the type of error distribution, and the link function connecting the predictors to the expected value of the response. Commonly used error distributions include Gaussian (for normal data), binomial (for binary data), and Poisson (for count data).
Related to the spatial interaction model, the Poisson distribution is often employed in GLMs for modeling count data, which aligns well with the nature of spatial interaction models dealing with the prediction of flows or counts of interactions between locations. The choice of Poisson distribution in GLM is particularly apt for scenarios where the response variable represents the number of events (e.g., trips, movements) occurring in a fixed period or area.
In the context of spatial interaction modeling using the glm
function in R Studio, the Poisson GLM can be applied to capture the dependence of interaction counts between different spatial entities (e.g., zones, hexagons) on various predictor variables. The spatial interaction model, in this case, aims to understand and predict the flow or volume of interactions between locations, with the Poisson distribution addressing the discrete and non-negative nature of such count data.
6.1 Correlation Analysis
Before running the model, its a good practice to check collinearity between the variables to prevent bumping into multicollinearity problem in the model.
Code
# Calculate correlation
<- cor(final_df[,3:18])
correlation_matrix
# Generate correlation plot
corrplot.mixed(correlation_matrix,
lower = "color", # Use ellipse for lower part
upper = "number", # Display correlation numbers in the upper part
tl.pos = "lt", # Place variable names to the left and top
tl.col = "black", # Set variable names color to black
tl.cex = 0.7, # Set variable names font size
number.cex = 0.4 # Set correlation numbers font size
)
- cor from stats package in base R computes a correlation matrix. In this code, it’s used to calculate the correlation matrix for selected columns (columns 3 through 18) of
final_df
. corrplot.mixed
is a function from the corrplot package. It visualizes a correlation matrix, offering different styles for the upper and lower matrix. Here, the lower part of the matrix uses color coding ("color"
), while the upper part displays correlation coefficients as numbers ("number"
). The function also allows customization of text position (tl.pos
), color (tl.col
), and size (tl.cex
for variable names,number.cex
for correlation numbers).- This code creates a mixed-style correlation plot, providing a visual and numerical representation of the correlation between variables in
final_df
.
Upon examining the correlation matrix, using a conservative threshold of correlation value above 0.7, the highly correlated variables are as follows:
all station count and train exit count for each push and pull respectively have a strong positive correlation, suggesting that areas with a higher number of stations also tend to have a higher count of train exits. This result is quite expected.
push_hdb_sf_count and push_est_pop also show a strong positive correlation, which may imply that regions with a higher number of HDB (Housing Development Board) flats tend to have a larger estimated population, a logical relationship given that the data is derived from the same source. Nevertheless, this result might also be caused by many of the hexagonal grid actually do not have HDB in the vicinity.
pull_finance_count and pull_train_exit_count.
pull_fnb_count and pull_finance_count.
pull_fnb_count and pull_lnr_count.
pull_fnr_count and pull_retails_count
this finding will be considered as basis for eliminating some variables in the model. Nevertheless, for experimental and comparison purpose, models without variables elimination will also be run in the next section.
6.2 The 4 Models Without Elimination
Unconstrained
Code
<- glm(formula = trips ~
uncSIM log(push_num_bus_stops) +
log(push_station_count) +
log(push_trainexit_count) +
log(push_hdb_sf_count) +
log(push_est_pop) +
log(pull_station_count) +
log(pull_trainexit_count) +
log(pull_biz_count) +
log(pull_entertn_count) +
log(pull_fnb_count) +
log(pull_finance_count) +
log(pull_lnr_count) +
log(pull_retails_count) +
log(pull_schools_sf_count) +
log(distance),
family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(uncSIM)
Call:
glm(formula = trips ~ log(push_num_bus_stops) + log(push_station_count) +
log(push_trainexit_count) + log(push_hdb_sf_count) + log(push_est_pop) +
log(pull_station_count) + log(pull_trainexit_count) + log(pull_biz_count) +
log(pull_entertn_count) + log(pull_fnb_count) + log(pull_finance_count) +
log(pull_lnr_count) + log(pull_retails_count) + log(pull_schools_sf_count) +
log(distance), family = poisson(link = "log"), data = final_df,
na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 13.2357996 0.0016799 7878.76 <2e-16 ***
log(push_num_bus_stops) 0.3015501 0.0005084 593.14 <2e-16 ***
log(push_station_count) -0.6001019 0.0009082 -660.75 <2e-16 ***
log(push_trainexit_count) 0.3891417 0.0004042 962.64 <2e-16 ***
log(push_hdb_sf_count) 0.4539595 0.0004671 971.83 <2e-16 ***
log(push_est_pop) -0.0507382 0.0001888 -268.68 <2e-16 ***
log(pull_station_count) -0.4687275 0.0008102 -578.55 <2e-16 ***
log(pull_trainexit_count) 0.6703817 0.0004561 1469.73 <2e-16 ***
log(pull_biz_count) 0.0891027 0.0001920 464.14 <2e-16 ***
log(pull_entertn_count) -0.0544500 0.0008472 -64.27 <2e-16 ***
log(pull_fnb_count) -0.1661899 0.0002889 -575.33 <2e-16 ***
log(pull_finance_count) 0.2667002 0.0003691 722.64 <2e-16 ***
log(pull_lnr_count) -0.2279931 0.0003982 -572.60 <2e-16 ***
log(pull_retails_count) 0.0387865 0.0002130 182.12 <2e-16 ***
log(pull_schools_sf_count) 0.2579308 0.0006415 402.10 <2e-16 ***
log(distance) -1.1797209 0.0001870 -6307.65 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 48920321 on 64869 degrees of freedom
AIC: 49277052
Number of Fisher Scoring iterations: 7
Code
CalcRSquared(uncSIM$data$trips, uncSIM$fitted.values)
[1] 0.1876436
- glm from stats package in base R fits generalized linear models. Here,
orcSIM
is a Poisson regression model with a log link function, predictingtrips
based on variouspull_*_count
variables,log(distance)
, andorigin_hex
. Thelog
function is applied to the count variables and distance, indicating a log-linear relationship. - summary from base R provides a detailed summary of the model’s fit, including coefficients, statistical significance, and other diagnostics.
CalcRSquared
is a customfunction for calculating the R-squared value of the model. It’s used here to calculate R-squared using the actualtrips
data and the fitted values fromorcSIM
.
Key Coefficients: The estimated coefficients reveal the impact of various predictor variables on the logarithm of trip counts. Notably, a positive coefficient (e.g., log(push_num_bus_stops)) suggests that an increase in the corresponding variable is associated with a higher number of trips, while a negative coefficient (e.g., log(push_station_count)) implies a negative influence. The large z-values and highly significant p-values (<2e-16) underscore the robustness and statistical significance of these associations.
- Intercept: 13.24 (p < 2e-16)
- log(push_num_bus_stops): 0.302 (p < 2e-16)
- log(push_station_count): -0.600 (p < 2e-16)
- log(push_trainexit_count): 0.389 (p < 2e-16)
- log(push_hdb_sf_count): 0.454 (p < 2e-16)
- log(push_est_pop): -0.051 (p < 2e-16)
- log(pull_station_count): -0.469 (p < 2e-16)
- log(pull_trainexit_count): 0.670 (p < 2e-16)
- log(pull_biz_count): 0.089 (p < 2e-16)
- log(pull_entertn_count): -0.054 (p < 2e-16)
- log(pull_fnb_count): -0.166 (p < 2e-16)
- log(pull_finance_count): 0.267 (p < 2e-16)
- log(pull_lnr_count): -0.228 (p < 2e-16)
- log(pull_retails_count): 0.039 (p < 2e-16)
- log(pull_schools_sf_count): 0.258 (p < 2e-16)
- log(distance): -1.180 (p < 2e-16)
Model Fit: The coefficient of determination (R-squared) for the model is 0.188, indicating that approximately 18.8% of the variability in trip counts can be explained by the selected predictor variables. While this suggests a moderate level of explanatory power, it also highlights the existence of unaccounted factors influencing trip counts. The significance of the individual coefficients supports the model’s ability to capture meaningful relationships within the dataset, despite the overall modest R-squared value.
Origin Constrained
Code
<- glm(formula = trips ~
orcSIM log(pull_station_count) +
log(pull_trainexit_count) +
log(pull_biz_count) +
log(pull_entertn_count) +
log(pull_fnb_count) +
log(pull_finance_count) +
log(pull_lnr_count) +
log(pull_retails_count) +
log(pull_schools_sf_count) +
log(distance) +
origin_hex,family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(orcSIM)
Call:
glm(formula = trips ~ log(pull_station_count) + log(pull_trainexit_count) +
log(pull_biz_count) + log(pull_entertn_count) + log(pull_fnb_count) +
log(pull_finance_count) + log(pull_lnr_count) + log(pull_retails_count) +
log(pull_schools_sf_count) + log(distance) + origin_hex,
family = poisson(link = "log"), data = final_df, na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 13.4439773 0.0243212 552.768 < 2e-16 ***
log(pull_station_count) -0.4031761 0.0008458 -476.695 < 2e-16 ***
log(pull_trainexit_count) 0.6617517 0.0004724 1400.713 < 2e-16 ***
log(pull_biz_count) 0.1076267 0.0002028 530.631 < 2e-16 ***
log(pull_entertn_count) -0.0888377 0.0008826 -100.655 < 2e-16 ***
log(pull_fnb_count) -0.1342505 0.0002989 -449.140 < 2e-16 ***
log(pull_finance_count) 0.2649556 0.0003801 697.086 < 2e-16 ***
log(pull_lnr_count) -0.1656854 0.0004101 -404.041 < 2e-16 ***
log(pull_retails_count) 0.0602612 0.0002237 269.418 < 2e-16 ***
log(pull_schools_sf_count) 0.2304467 0.0006696 344.132 < 2e-16 ***
log(distance) -1.2389958 0.0002122 -5838.512 < 2e-16 ***
origin_hex1003 2.4855105 0.0245533 101.229 < 2e-16 ***
origin_hex1004 3.3001935 0.0243940 135.287 < 2e-16 ***
origin_hex1011 -0.7843741 0.0386103 -20.315 < 2e-16 ***
origin_hex1012 -0.8414045 0.0399385 -21.068 < 2e-16 ***
origin_hex1013 -0.3016287 0.0288954 -10.439 < 2e-16 ***
origin_hex1014 0.2515593 0.0264026 9.528 < 2e-16 ***
origin_hex1015 -0.4276372 0.0289114 -14.791 < 2e-16 ***
origin_hex1016 0.9613026 0.0252059 38.138 < 2e-16 ***
origin_hex1018 1.4890003 0.0260520 57.155 < 2e-16 ***
origin_hex1019 2.8799508 0.0246205 116.974 < 2e-16 ***
origin_hex1023 1.3355897 0.0258783 51.610 < 2e-16 ***
origin_hex1024 2.6397529 0.0245816 107.387 < 2e-16 ***
origin_hex1025 -1.8176965 0.0547601 -33.194 < 2e-16 ***
origin_hex1033 0.4198174 0.0265934 15.787 < 2e-16 ***
origin_hex1034 1.1740172 0.0252111 46.568 < 2e-16 ***
origin_hex1035 1.7095382 0.0247827 68.981 < 2e-16 ***
origin_hex1036 -0.3245307 0.0278612 -11.648 < 2e-16 ***
origin_hex1037 0.8990567 0.0251644 35.727 < 2e-16 ***
origin_hex1043 -0.2271987 0.0345369 -6.578 4.75e-11 ***
origin_hex1045 2.1682387 0.0245928 88.166 < 2e-16 ***
origin_hex1046 2.3745318 0.0246867 96.187 < 2e-16 ***
origin_hex1053 1.5082486 0.0248497 60.695 < 2e-16 ***
origin_hex1054 0.8574729 0.0253915 33.770 < 2e-16 ***
origin_hex1055 1.7269224 0.0247363 69.813 < 2e-16 ***
origin_hex1056 0.5839524 0.0258505 22.590 < 2e-16 ***
origin_hex1064 -3.3008975 0.2511754 -13.142 < 2e-16 ***
origin_hex1066 2.2496339 0.0246921 91.107 < 2e-16 ***
origin_hex1067 2.2765589 0.0250518 90.874 < 2e-16 ***
origin_hex1074 1.0532402 0.0253236 41.591 < 2e-16 ***
origin_hex1075 0.6181088 0.0261711 23.618 < 2e-16 ***
origin_hex1076 0.4444315 0.0256665 17.316 < 2e-16 ***
origin_hex1077 0.5409385 0.0261886 20.656 < 2e-16 ***
origin_hex1079 1.6800394 0.0247110 67.988 < 2e-16 ***
origin_hex1085 -2.7240327 0.1434886 -18.984 < 2e-16 ***
origin_hex1087 1.9089908 0.0248645 76.776 < 2e-16 ***
origin_hex1088 0.8721078 0.0268984 32.422 < 2e-16 ***
origin_hex109 -1.5070319 0.1019477 -14.782 < 2e-16 ***
origin_hex1094 -1.2273748 0.0497934 -24.649 < 2e-16 ***
origin_hex1095 -1.0705532 0.0407402 -26.278 < 2e-16 ***
origin_hex1096 0.5044426 0.0315289 15.999 < 2e-16 ***
origin_hex1097 2.0018581 0.0244911 81.738 < 2e-16 ***
origin_hex1098 -0.4691930 0.0301181 -15.578 < 2e-16 ***
origin_hex1099 1.0629911 0.0251124 42.329 < 2e-16 ***
origin_hex110 -0.5684377 0.0756139 -7.518 5.58e-14 ***
origin_hex1105 -1.2588102 0.0658353 -19.121 < 2e-16 ***
origin_hex1106 -2.1179833 0.0948278 -22.335 < 2e-16 ***
origin_hex1107 -0.7011222 0.0365432 -19.186 < 2e-16 ***
origin_hex1108 3.5942265 0.0243342 147.703 < 2e-16 ***
origin_hex1109 1.4052447 0.0262197 53.595 < 2e-16 ***
origin_hex111 1.7547977 0.0267571 65.583 < 2e-16 ***
origin_hex1116 0.5650568 0.0256018 22.071 < 2e-16 ***
origin_hex1117 -0.7851506 0.0297763 -26.368 < 2e-16 ***
origin_hex1118 -1.0296565 0.0307687 -33.464 < 2e-16 ***
origin_hex1119 0.3630857 0.0260418 13.942 < 2e-16 ***
origin_hex112 -2.3842721 0.0685898 -34.761 < 2e-16 ***
origin_hex1120 0.1224200 0.0274805 4.455 8.40e-06 ***
origin_hex1129 2.2924941 0.0246436 93.026 < 2e-16 ***
origin_hex1130 2.7333565 0.0245148 111.498 < 2e-16 ***
origin_hex1131 1.2441262 0.0261802 47.522 < 2e-16 ***
origin_hex1136 -0.3773068 0.0285768 -13.203 < 2e-16 ***
origin_hex1138 -1.1293494 0.0373742 -30.217 < 2e-16 ***
origin_hex1139 1.2464727 0.0247441 50.374 < 2e-16 ***
origin_hex1141 1.1867254 0.0249923 47.484 < 2e-16 ***
origin_hex1148 -1.1264107 0.0569959 -19.763 < 2e-16 ***
origin_hex1149 0.3598981 0.0296596 12.134 < 2e-16 ***
origin_hex1150 2.8461458 0.0244670 116.326 < 2e-16 ***
origin_hex1151 1.4050456 0.0250256 56.144 < 2e-16 ***
origin_hex1158 -0.1108969 0.0265781 -4.172 3.01e-05 ***
origin_hex1159 1.0642214 0.0248651 42.800 < 2e-16 ***
origin_hex1160 2.0530891 0.0245045 83.784 < 2e-16 ***
origin_hex1171 2.8195936 0.0245096 115.040 < 2e-16 ***
origin_hex1172 2.7144555 0.0244897 110.841 < 2e-16 ***
origin_hex1173 0.4505651 0.0271437 16.599 < 2e-16 ***
origin_hex1174 -2.8444583 0.2683617 -10.599 < 2e-16 ***
origin_hex1178 -0.0357990 0.0263030 -1.361 0.173506
origin_hex1179 0.7598229 0.0251525 30.209 < 2e-16 ***
origin_hex1180 1.6424971 0.0245961 66.779 < 2e-16 ***
origin_hex1181 0.8850885 0.0250763 35.296 < 2e-16 ***
origin_hex1183 -0.0474056 0.0268558 -1.765 0.077531 .
origin_hex1190 -0.8772480 0.0536402 -16.354 < 2e-16 ***
origin_hex1192 2.2377621 0.0249647 89.637 < 2e-16 ***
origin_hex1193 1.9785082 0.0247482 79.946 < 2e-16 ***
origin_hex1194 0.2829625 0.0278703 10.153 < 2e-16 ***
origin_hex1200 0.9957346 0.0251063 39.661 < 2e-16 ***
origin_hex1201 0.7516893 0.0252239 29.801 < 2e-16 ***
origin_hex1203 1.2389016 0.0249225 49.710 < 2e-16 ***
origin_hex1204 0.9981851 0.0251519 39.686 < 2e-16 ***
origin_hex1211 -1.4624627 0.0923341 -15.839 < 2e-16 ***
origin_hex1214 2.5723196 0.0245486 104.785 < 2e-16 ***
origin_hex1215 -0.5422929 0.0464653 -11.671 < 2e-16 ***
origin_hex1216 -1.4114980 0.0470367 -30.008 < 2e-16 ***
origin_hex1220 2.0518823 0.0245657 83.526 < 2e-16 ***
origin_hex1221 1.4173594 0.0246438 57.514 < 2e-16 ***
origin_hex1222 1.2146452 0.0260562 46.616 < 2e-16 ***
origin_hex1223 -0.7058728 0.0293867 -24.020 < 2e-16 ***
origin_hex1224 0.0775920 0.0264263 2.936 0.003323 **
origin_hex1231 -3.2757568 0.1905342 -17.192 < 2e-16 ***
origin_hex1232 -2.0171117 0.1144071 -17.631 < 2e-16 ***
origin_hex1235 0.0457122 0.0277947 1.645 0.100045
origin_hex1236 0.4288767 0.0277541 15.453 < 2e-16 ***
origin_hex1241 0.1522568 0.0261959 5.812 6.16e-09 ***
origin_hex1242 0.8126169 0.0251493 32.312 < 2e-16 ***
origin_hex1243 1.3820442 0.0247064 55.939 < 2e-16 ***
origin_hex1246 0.1788057 0.0258737 6.911 4.82e-12 ***
origin_hex1256 1.6311222 0.0254839 64.006 < 2e-16 ***
origin_hex1257 2.3817944 0.0247443 96.256 < 2e-16 ***
origin_hex1258 0.1841946 0.0281441 6.545 5.96e-11 ***
origin_hex1262 0.7654240 0.0255639 29.942 < 2e-16 ***
origin_hex1263 1.0591523 0.0247800 42.742 < 2e-16 ***
origin_hex1264 0.1904030 0.0269047 7.077 1.47e-12 ***
origin_hex1265 -0.5268372 0.0279169 -18.872 < 2e-16 ***
origin_hex1266 0.8905905 0.0254121 35.046 < 2e-16 ***
origin_hex1267 -1.1711953 0.0361155 -32.429 < 2e-16 ***
origin_hex1272 -3.2493270 0.1179930 -27.538 < 2e-16 ***
origin_hex1273 0.5292696 0.0269653 19.628 < 2e-16 ***
origin_hex1277 2.2693064 0.0245423 92.465 < 2e-16 ***
origin_hex1278 -0.0349316 0.0278048 -1.256 0.209002
origin_hex128 0.7223397 0.0329278 21.937 < 2e-16 ***
origin_hex1283 2.2099958 0.0245209 90.127 < 2e-16 ***
origin_hex1284 1.4789675 0.0246893 59.903 < 2e-16 ***
origin_hex1285 2.1685664 0.0244634 88.645 < 2e-16 ***
origin_hex1286 0.3900799 0.0262077 14.884 < 2e-16 ***
origin_hex1289 -1.7100541 0.0521219 -32.809 < 2e-16 ***
origin_hex129 -1.9336424 0.1905354 -10.148 < 2e-16 ***
origin_hex1293 -2.9107369 0.0923342 -31.524 < 2e-16 ***
origin_hex1294 2.0587110 0.0249328 82.570 < 2e-16 ***
origin_hex1295 -0.4439498 0.0317701 -13.974 < 2e-16 ***
origin_hex1298 1.3145305 0.0250462 52.484 < 2e-16 ***
origin_hex1299 1.8406859 0.0249585 73.750 < 2e-16 ***
origin_hex130 -1.8673592 0.0649040 -28.771 < 2e-16 ***
origin_hex1304 2.1748259 0.0245266 88.672 < 2e-16 ***
origin_hex1305 1.5141444 0.0245807 61.599 < 2e-16 ***
origin_hex1307 -1.8874079 0.0446967 -42.227 < 2e-16 ***
origin_hex1308 1.0380173 0.0249832 41.549 < 2e-16 ***
origin_hex131 -0.6816178 0.0427962 -15.927 < 2e-16 ***
origin_hex1310 -3.2232502 0.1370066 -23.526 < 2e-16 ***
origin_hex1316 -1.4776283 0.0410252 -36.018 < 2e-16 ***
origin_hex1317 0.2317556 0.0266689 8.690 < 2e-16 ***
origin_hex1318 -0.2452873 0.0286198 -8.571 < 2e-16 ***
origin_hex1319 2.4974258 0.0245142 101.877 < 2e-16 ***
origin_hex132 -1.2534734 0.0537430 -23.323 < 2e-16 ***
origin_hex1320 1.2359134 0.0257697 47.960 < 2e-16 ***
origin_hex1325 -0.1744563 0.0271347 -6.429 1.28e-10 ***
origin_hex1326 1.7039295 0.0245700 69.350 < 2e-16 ***
origin_hex1327 1.4634004 0.0246400 59.391 < 2e-16 ***
origin_hex1328 0.1875723 0.0259722 7.222 5.12e-13 ***
origin_hex1329 0.3338163 0.0268275 12.443 < 2e-16 ***
origin_hex133 -1.4657855 0.0448298 -32.697 < 2e-16 ***
origin_hex1330 0.1804237 0.0255217 7.069 1.56e-12 ***
origin_hex1331 -3.8892031 0.3024867 -12.857 < 2e-16 ***
origin_hex1333 -0.2426770 0.0272247 -8.914 < 2e-16 ***
origin_hex1334 0.1990879 0.0268907 7.404 1.33e-13 ***
origin_hex1335 -0.2433650 0.0295157 -8.245 < 2e-16 ***
origin_hex1336 -2.7663552 0.1099236 -25.166 < 2e-16 ***
origin_hex1337 -2.1532596 0.0543936 -39.587 < 2e-16 ***
origin_hex1338 -3.0472530 0.0849208 -35.883 < 2e-16 ***
origin_hex1339 2.5156481 0.0244941 102.704 < 2e-16 ***
origin_hex134 0.1972097 0.0336015 5.869 4.38e-09 ***
origin_hex1340 0.8782192 0.0257735 34.074 < 2e-16 ***
origin_hex1341 -4.0485215 0.7075234 -5.722 1.05e-08 ***
origin_hex1346 1.4430774 0.0249829 57.763 < 2e-16 ***
origin_hex1347 2.3145747 0.0244663 94.603 < 2e-16 ***
origin_hex1348 0.6561063 0.0250100 26.234 < 2e-16 ***
origin_hex1349 0.3521877 0.0255297 13.795 < 2e-16 ***
origin_hex1350 0.5026128 0.0266144 18.885 < 2e-16 ***
origin_hex1353 -0.0746080 0.0262122 -2.846 0.004423 **
origin_hex1354 -0.0853514 0.0272042 -3.137 0.001704 **
origin_hex1355 0.7581085 0.0256696 29.533 < 2e-16 ***
origin_hex1357 -0.1590540 0.0305759 -5.202 1.97e-07 ***
origin_hex1358 1.1488203 0.0252566 45.486 < 2e-16 ***
origin_hex1359 1.7538476 0.0247558 70.846 < 2e-16 ***
origin_hex1360 1.7635408 0.0247850 71.154 < 2e-16 ***
origin_hex1361 2.7413196 0.0245363 111.725 < 2e-16 ***
origin_hex1362 -1.3722648 0.0512413 -26.780 < 2e-16 ***
origin_hex1368 0.3376315 0.0256357 13.170 < 2e-16 ***
origin_hex1369 0.1056627 0.0257046 4.111 3.95e-05 ***
origin_hex1370 1.0811003 0.0247370 43.704 < 2e-16 ***
origin_hex1371 0.4351686 0.0261359 16.650 < 2e-16 ***
origin_hex1372 -0.2793561 0.0275153 -10.153 < 2e-16 ***
origin_hex1373 -2.0995833 0.0525189 -39.978 < 2e-16 ***
origin_hex1374 0.0917024 0.0287265 3.192 0.001412 **
origin_hex1375 0.8931920 0.0254232 35.133 < 2e-16 ***
origin_hex1376 0.6506721 0.0271479 23.968 < 2e-16 ***
origin_hex1379 -1.2173069 0.0420673 -28.937 < 2e-16 ***
origin_hex1380 2.7934394 0.0244126 114.426 < 2e-16 ***
origin_hex1381 2.4221403 0.0244992 98.866 < 2e-16 ***
origin_hex1382 1.9428799 0.0250016 77.710 < 2e-16 ***
origin_hex1383 -0.6243729 0.0340936 -18.313 < 2e-16 ***
origin_hex1388 0.7695726 0.0250794 30.685 < 2e-16 ***
origin_hex1389 0.0447629 0.0257848 1.736 0.082561 .
origin_hex1390 0.3418253 0.0251305 13.602 < 2e-16 ***
origin_hex1391 0.4835179 0.0255982 18.889 < 2e-16 ***
origin_hex1392 -0.1207033 0.0288897 -4.178 2.94e-05 ***
origin_hex1393 -0.8351087 0.0284766 -29.326 < 2e-16 ***
origin_hex1394 0.4629447 0.0253674 18.250 < 2e-16 ***
origin_hex1395 0.4066355 0.0254377 15.986 < 2e-16 ***
origin_hex1396 1.7342509 0.0247361 70.110 < 2e-16 ***
origin_hex1397 1.3879109 0.0247643 56.045 < 2e-16 ***
origin_hex1398 0.6454748 0.0265351 24.325 < 2e-16 ***
origin_hex1400 1.9252166 0.0250545 76.841 < 2e-16 ***
origin_hex1401 2.0340919 0.0245314 82.918 < 2e-16 ***
origin_hex1402 2.3150693 0.0245943 94.130 < 2e-16 ***
origin_hex1404 2.2128511 0.0284288 77.838 < 2e-16 ***
origin_hex1410 1.1397432 0.0246277 46.279 < 2e-16 ***
origin_hex1411 0.2469550 0.0254984 9.685 < 2e-16 ***
origin_hex1412 0.5059181 0.0250216 20.219 < 2e-16 ***
origin_hex1413 1.3206917 0.0246899 53.491 < 2e-16 ***
origin_hex1414 0.4162891 0.0250396 16.625 < 2e-16 ***
origin_hex1415 0.1318114 0.0259050 5.088 3.61e-07 ***
origin_hex1416 0.8166251 0.0252761 32.308 < 2e-16 ***
origin_hex1417 0.8212286 0.0250535 32.779 < 2e-16 ***
origin_hex1418 1.6801791 0.0246895 68.052 < 2e-16 ***
origin_hex1419 1.0918192 0.0250736 43.545 < 2e-16 ***
origin_hex1422 2.2863318 0.0247110 92.523 < 2e-16 ***
origin_hex1423 3.3014575 0.0244396 135.086 < 2e-16 ***
origin_hex1430 0.9032695 0.0249181 36.250 < 2e-16 ***
origin_hex1431 1.0269839 0.0247049 41.570 < 2e-16 ***
origin_hex1432 1.0333342 0.0246928 41.848 < 2e-16 ***
origin_hex1433 -0.4202313 0.0289213 -14.530 < 2e-16 ***
origin_hex1434 1.0981275 0.0248118 44.258 < 2e-16 ***
origin_hex1435 1.6254410 0.0245531 66.201 < 2e-16 ***
origin_hex1436 -1.3187080 0.0330383 -39.915 < 2e-16 ***
origin_hex1437 1.8312131 0.0245994 74.441 < 2e-16 ***
origin_hex1438 2.1251370 0.0244495 86.919 < 2e-16 ***
origin_hex1439 2.7809703 0.0243954 113.995 < 2e-16 ***
origin_hex1440 -0.9659255 0.0314694 -30.694 < 2e-16 ***
origin_hex1442 1.7543233 0.0250779 69.955 < 2e-16 ***
origin_hex1443 2.9409004 0.0244813 120.129 < 2e-16 ***
origin_hex1444 2.1270502 0.0252719 84.167 < 2e-16 ***
origin_hex1452 0.0440742 0.0253850 1.736 0.082523 .
origin_hex1453 0.4848512 0.0251221 19.300 < 2e-16 ***
origin_hex1454 -0.7195099 0.0302573 -23.780 < 2e-16 ***
origin_hex1455 0.5903097 0.0255264 23.125 < 2e-16 ***
origin_hex1456 1.1564150 0.0249186 46.408 < 2e-16 ***
origin_hex1457 1.9853115 0.0245571 80.845 < 2e-16 ***
origin_hex1458 1.9836572 0.0244974 80.974 < 2e-16 ***
origin_hex1459 1.6179798 0.0246445 65.653 < 2e-16 ***
origin_hex1460 0.9156630 0.0249997 36.627 < 2e-16 ***
origin_hex1461 -0.4079619 0.0293499 -13.900 < 2e-16 ***
origin_hex1464 2.9896260 0.0244538 122.256 < 2e-16 ***
origin_hex1465 2.7464298 0.0246451 111.439 < 2e-16 ***
origin_hex1472 -1.2194267 0.0306989 -39.722 < 2e-16 ***
origin_hex1473 -0.3279362 0.0260696 -12.579 < 2e-16 ***
origin_hex1474 0.6256624 0.0247920 25.236 < 2e-16 ***
origin_hex1475 1.7310842 0.0245647 70.470 < 2e-16 ***
origin_hex1476 1.1563774 0.0249824 46.288 < 2e-16 ***
origin_hex1477 2.4527680 0.0243794 100.608 < 2e-16 ***
origin_hex1478 0.8941965 0.0250077 35.757 < 2e-16 ***
origin_hex1479 1.0614417 0.0248642 42.690 < 2e-16 ***
origin_hex1480 2.7598904 0.0243670 113.263 < 2e-16 ***
origin_hex1481 0.3025476 0.0261592 11.566 < 2e-16 ***
origin_hex1482 0.2332892 0.0272541 8.560 < 2e-16 ***
origin_hex1485 1.4646609 0.0246766 59.354 < 2e-16 ***
origin_hex1494 -0.0192817 0.0268249 -0.719 0.472265
origin_hex1495 0.1879398 0.0254092 7.397 1.40e-13 ***
origin_hex1496 0.6873668 0.0246460 27.890 < 2e-16 ***
origin_hex1497 1.5066968 0.0247378 60.907 < 2e-16 ***
origin_hex1498 1.8445564 0.0245449 75.150 < 2e-16 ***
origin_hex1499 2.0304483 0.0244746 82.961 < 2e-16 ***
origin_hex150 1.3822071 0.0312688 44.204 < 2e-16 ***
origin_hex1500 2.0418413 0.0247684 82.437 < 2e-16 ***
origin_hex1501 2.1452084 0.0244820 87.624 < 2e-16 ***
origin_hex1502 1.7196426 0.0246306 69.817 < 2e-16 ***
origin_hex1506 -2.7148033 0.1111474 -24.425 < 2e-16 ***
origin_hex151 -1.4743675 0.0634483 -23.237 < 2e-16 ***
origin_hex1515 -1.1438689 0.0321016 -35.633 < 2e-16 ***
origin_hex1516 -0.1415410 0.0250782 -5.644 1.66e-08 ***
origin_hex1517 0.8049441 0.0251119 32.054 < 2e-16 ***
origin_hex1518 0.8929948 0.0252504 35.366 < 2e-16 ***
origin_hex1519 2.1583588 0.0246654 87.505 < 2e-16 ***
origin_hex152 -1.4747506 0.0846653 -17.419 < 2e-16 ***
origin_hex1520 0.7690794 0.0251359 30.597 < 2e-16 ***
origin_hex1521 0.1018016 0.0265235 3.838 0.000124 ***
origin_hex1522 2.4280492 0.0244470 99.319 < 2e-16 ***
origin_hex1523 0.6286390 0.0283780 22.152 < 2e-16 ***
origin_hex1524 1.0127447 0.0258385 39.195 < 2e-16 ***
origin_hex1527 0.1874271 0.0289296 6.479 9.25e-11 ***
origin_hex153 -1.7334813 0.0481018 -36.038 < 2e-16 ***
origin_hex1535 -1.9963366 0.0759654 -26.280 < 2e-16 ***
origin_hex1536 -1.6609627 0.0402375 -41.279 < 2e-16 ***
origin_hex1537 -1.0759143 0.0287454 -37.429 < 2e-16 ***
origin_hex1538 0.6047826 0.0249289 24.260 < 2e-16 ***
origin_hex1539 1.0609196 0.0247134 42.929 < 2e-16 ***
origin_hex154 1.6112574 0.0258249 62.392 < 2e-16 ***
origin_hex1540 1.7281837 0.0245772 70.316 < 2e-16 ***
origin_hex1541 2.4157305 0.0246916 97.836 < 2e-16 ***
origin_hex1542 -0.0320725 0.0281212 -1.141 0.254075
origin_hex1543 0.5173108 0.0310787 16.645 < 2e-16 ***
origin_hex1544 1.4121871 0.0250092 56.467 < 2e-16 ***
origin_hex1547 -2.0553466 0.0626281 -32.818 < 2e-16 ***
origin_hex155 -1.3890461 0.0407976 -34.047 < 2e-16 ***
origin_hex1556 -0.9482858 0.0584301 -16.229 < 2e-16 ***
origin_hex1557 -1.8801190 0.0391498 -48.024 < 2e-16 ***
origin_hex1558 -0.2494481 0.0299046 -8.341 < 2e-16 ***
origin_hex1559 1.2026220 0.0246486 48.791 < 2e-16 ***
origin_hex156 -0.5660419 0.0455517 -12.426 < 2e-16 ***
origin_hex1560 2.1065513 0.0244629 86.112 < 2e-16 ***
origin_hex1561 1.9524514 0.0246097 79.337 < 2e-16 ***
origin_hex1562 -1.0115384 0.0307725 -32.872 < 2e-16 ***
origin_hex1563 0.6809143 0.0252043 27.016 < 2e-16 ***
origin_hex1564 -0.0379621 0.0272847 -1.391 0.164125
origin_hex1565 -0.1032857 0.0275858 -3.744 0.000181 ***
origin_hex1566 -0.5585801 0.0308585 -18.101 < 2e-16 ***
origin_hex1567 -2.4894831 0.0802303 -31.029 < 2e-16 ***
origin_hex1568 -1.7014221 0.0658351 -25.844 < 2e-16 ***
origin_hex1578 -3.9037237 0.7075236 -5.517 3.44e-08 ***
origin_hex1580 -0.1725988 0.0283428 -6.090 1.13e-09 ***
origin_hex1581 -1.4414661 0.0311122 -46.331 < 2e-16 ***
origin_hex1582 1.6795179 0.0244914 68.576 < 2e-16 ***
origin_hex1583 -0.2485624 0.0311663 -7.975 1.52e-15 ***
origin_hex1584 0.4313455 0.0261215 16.513 < 2e-16 ***
origin_hex1585 1.0531369 0.0256959 40.985 < 2e-16 ***
origin_hex1586 0.0684735 0.0269885 2.537 0.011176 *
origin_hex1589 -3.0633912 0.1144069 -26.776 < 2e-16 ***
origin_hex1590 -1.7928321 0.0623641 -28.748 < 2e-16 ***
origin_hex1600 1.6324651 0.0258345 63.189 < 2e-16 ***
origin_hex1601 0.2380260 0.0252338 9.433 < 2e-16 ***
origin_hex1602 1.3142203 0.0248892 52.803 < 2e-16 ***
origin_hex1603 1.9179880 0.0245015 78.280 < 2e-16 ***
origin_hex1604 0.5456347 0.0253410 21.532 < 2e-16 ***
origin_hex1605 1.6400432 0.0245456 66.816 < 2e-16 ***
origin_hex1606 1.9164306 0.0257321 74.476 < 2e-16 ***
origin_hex1607 0.5272615 0.0258572 20.391 < 2e-16 ***
origin_hex1608 2.1951579 0.0245767 89.319 < 2e-16 ***
origin_hex1609 1.7815795 0.0247900 71.867 < 2e-16 ***
origin_hex1610 -1.6220880 0.0668200 -24.275 < 2e-16 ***
origin_hex1622 0.7326510 0.0312185 23.469 < 2e-16 ***
origin_hex1623 1.6182124 0.0245192 65.998 < 2e-16 ***
origin_hex1624 0.6153984 0.0254421 24.188 < 2e-16 ***
origin_hex1625 1.8387132 0.0246109 74.711 < 2e-16 ***
origin_hex1626 2.3541217 0.0244207 96.399 < 2e-16 ***
origin_hex1627 0.9254074 0.0251124 36.851 < 2e-16 ***
origin_hex1628 2.5605392 0.0244333 104.797 < 2e-16 ***
origin_hex1629 1.3788377 0.0250809 54.975 < 2e-16 ***
origin_hex1630 1.3251193 0.0253333 52.307 < 2e-16 ***
origin_hex1631 -2.2583380 0.0639175 -35.332 < 2e-16 ***
origin_hex1642 -0.6178627 0.0362756 -17.032 < 2e-16 ***
origin_hex1643 1.5809538 0.0245770 64.326 < 2e-16 ***
origin_hex1644 -0.2876204 0.0288866 -9.957 < 2e-16 ***
origin_hex1645 1.0223149 0.0248925 41.069 < 2e-16 ***
origin_hex1646 0.9863457 0.0256474 38.458 < 2e-16 ***
origin_hex1647 1.0661890 0.0248063 42.981 < 2e-16 ***
origin_hex1648 1.6812396 0.0246325 68.253 < 2e-16 ***
origin_hex1649 2.4132504 0.0244658 98.638 < 2e-16 ***
origin_hex1650 2.1490328 0.0247229 86.925 < 2e-16 ***
origin_hex1664 -3.1948556 0.1684264 -18.969 < 2e-16 ***
origin_hex1665 1.7775389 0.0245080 72.529 < 2e-16 ***
origin_hex1666 0.5885727 0.0251137 23.436 < 2e-16 ***
origin_hex1667 1.7348981 0.0262560 66.076 < 2e-16 ***
origin_hex1668 1.7615206 0.0246187 71.552 < 2e-16 ***
origin_hex1670 2.4667330 0.0244302 100.971 < 2e-16 ***
origin_hex1671 2.9620204 0.0246988 119.926 < 2e-16 ***
origin_hex1672 2.1155481 0.0248368 85.178 < 2e-16 ***
origin_hex1684 0.8533253 0.0268528 31.778 < 2e-16 ***
origin_hex1685 1.5424043 0.0247432 62.336 < 2e-16 ***
origin_hex1686 1.3339900 0.0247517 53.895 < 2e-16 ***
origin_hex1687 1.1079358 0.0252213 43.929 < 2e-16 ***
origin_hex1688 0.5097752 0.0255119 19.982 < 2e-16 ***
origin_hex1689 -0.0395075 0.0269320 -1.467 0.142393
origin_hex1690 1.4007267 0.0250093 56.008 < 2e-16 ***
origin_hex1691 2.1300460 0.0245730 86.682 < 2e-16 ***
origin_hex1692 1.2067341 0.0254269 47.459 < 2e-16 ***
origin_hex1706 1.5201376 0.0249352 60.964 < 2e-16 ***
origin_hex1707 1.1840232 0.0246875 47.960 < 2e-16 ***
origin_hex1708 1.8717487 0.0245310 76.301 < 2e-16 ***
origin_hex1709 0.8742757 0.0250510 34.900 < 2e-16 ***
origin_hex1710 2.0812021 0.0245423 84.801 < 2e-16 ***
origin_hex1711 1.7187962 0.0246689 69.675 < 2e-16 ***
origin_hex1712 2.4207880 0.0244269 99.103 < 2e-16 ***
origin_hex1713 -0.0069182 0.0271121 -0.255 0.798591
origin_hex1714 2.3468670 0.0246126 95.352 < 2e-16 ***
origin_hex172 0.1161334 0.0796012 1.459 0.144582
origin_hex1727 1.5732091 0.0247329 63.608 < 2e-16 ***
origin_hex1728 1.4821106 0.0246492 60.128 < 2e-16 ***
origin_hex1729 0.9882227 0.0248174 39.820 < 2e-16 ***
origin_hex1730 -0.8845089 0.0313720 -28.194 < 2e-16 ***
origin_hex1731 1.4489884 0.0247760 58.483 < 2e-16 ***
origin_hex1732 2.1334882 0.0244701 87.188 < 2e-16 ***
origin_hex1733 1.8711834 0.0245980 76.071 < 2e-16 ***
origin_hex1734 1.9116159 0.0245640 77.822 < 2e-16 ***
origin_hex1735 2.8416028 0.0248593 114.307 < 2e-16 ***
origin_hex174 -1.5703626 0.0522543 -30.052 < 2e-16 ***
origin_hex1748 0.3965533 0.0258793 15.323 < 2e-16 ***
origin_hex1749 1.1880256 0.0246972 48.104 < 2e-16 ***
origin_hex175 0.7234549 0.0262499 27.560 < 2e-16 ***
origin_hex1750 0.4119589 0.0252264 16.330 < 2e-16 ***
origin_hex1751 0.1563932 0.0263570 5.934 2.96e-09 ***
origin_hex1753 2.0452347 0.0245021 83.472 < 2e-16 ***
origin_hex1754 2.4117265 0.0244263 98.735 < 2e-16 ***
origin_hex1755 1.8367861 0.0245870 74.706 < 2e-16 ***
origin_hex1756 1.7049568 0.0247485 68.891 < 2e-16 ***
origin_hex1757 -0.7660998 0.0343745 -22.287 < 2e-16 ***
origin_hex176 1.9703382 0.0249596 78.941 < 2e-16 ***
origin_hex1769 1.1902852 0.0248511 47.897 < 2e-16 ***
origin_hex1770 0.8392552 0.0260098 32.267 < 2e-16 ***
origin_hex1771 -0.0352760 0.0261372 -1.350 0.177129
origin_hex1772 -0.0655458 0.0336076 -1.950 0.051137 .
origin_hex1774 1.8469904 0.0245689 75.176 < 2e-16 ***
origin_hex1775 1.4068454 0.0247843 56.764 < 2e-16 ***
origin_hex1776 2.4304206 0.0244383 99.451 < 2e-16 ***
origin_hex1777 2.4760348 0.0245066 101.035 < 2e-16 ***
origin_hex1778 1.3766691 0.0259268 53.098 < 2e-16 ***
origin_hex1790 1.8116241 0.0246674 73.442 < 2e-16 ***
origin_hex1791 0.9486662 0.0249931 37.957 < 2e-16 ***
origin_hex1792 1.2774401 0.0250428 51.010 < 2e-16 ***
origin_hex1793 -0.7065948 0.0276470 -25.558 < 2e-16 ***
origin_hex1794 -0.1140569 0.0365439 -3.121 0.001802 **
origin_hex1795 -1.3352415 0.0407114 -32.798 < 2e-16 ***
origin_hex1796 2.1720403 0.0245525 88.465 < 2e-16 ***
origin_hex1797 2.2212371 0.0245058 90.641 < 2e-16 ***
origin_hex1798 2.3611829 0.0245070 96.347 < 2e-16 ***
origin_hex1799 1.0686115 0.0255343 41.850 < 2e-16 ***
origin_hex1800 -1.0264383 0.0361555 -28.390 < 2e-16 ***
origin_hex1811 1.1335755 0.0252354 44.920 < 2e-16 ***
origin_hex1812 2.0527259 0.0244683 83.893 < 2e-16 ***
origin_hex1813 1.7885028 0.0245096 72.971 < 2e-16 ***
origin_hex1817 1.8639790 0.0247469 75.322 < 2e-16 ***
origin_hex1818 2.1158525 0.0245797 86.081 < 2e-16 ***
origin_hex1819 2.4281783 0.0244761 99.206 < 2e-16 ***
origin_hex1820 -0.5307646 0.0407682 -13.019 < 2e-16 ***
origin_hex1832 1.6528291 0.0247493 66.783 < 2e-16 ***
origin_hex1833 1.1880095 0.0248966 47.718 < 2e-16 ***
origin_hex1834 1.5100423 0.0246213 61.331 < 2e-16 ***
origin_hex1835 0.8187114 0.0252654 32.404 < 2e-16 ***
origin_hex1837 -1.5466342 0.0654143 -23.644 < 2e-16 ***
origin_hex1839 1.5471459 0.0250595 61.739 < 2e-16 ***
origin_hex1840 3.2366441 0.0243618 132.858 < 2e-16 ***
origin_hex1841 -0.9197966 0.0420185 -21.890 < 2e-16 ***
origin_hex1842 1.7248908 0.0263375 65.492 < 2e-16 ***
origin_hex1853 1.5442291 0.0246937 62.535 < 2e-16 ***
origin_hex1854 1.9144208 0.0246301 77.727 < 2e-16 ***
origin_hex1855 1.8937956 0.0245510 77.137 < 2e-16 ***
origin_hex1858 -0.1201819 0.0349618 -3.438 0.000587 ***
origin_hex1860 2.6768628 0.0255338 104.836 < 2e-16 ***
origin_hex1861 2.1697832 0.0246072 88.177 < 2e-16 ***
origin_hex1874 1.9274085 0.0249046 77.392 < 2e-16 ***
origin_hex1875 0.0636901 0.0271521 2.346 0.018993 *
origin_hex1876 1.9227528 0.0260462 73.821 < 2e-16 ***
origin_hex1877 1.5955806 0.0246577 64.709 < 2e-16 ***
origin_hex1880 -1.3771335 0.0560941 -24.550 < 2e-16 ***
origin_hex1882 2.1613412 0.0246758 87.590 < 2e-16 ***
origin_hex1883 2.0047289 0.0256659 78.109 < 2e-16 ***
origin_hex1895 1.8657329 0.0246420 75.713 < 2e-16 ***
origin_hex1896 0.2370993 0.0260495 9.102 < 2e-16 ***
origin_hex1897 1.0982683 0.0257172 42.706 < 2e-16 ***
origin_hex1898 -3.7308026 0.1346590 -27.706 < 2e-16 ***
origin_hex1901 -1.5210310 0.0636335 -23.903 < 2e-16 ***
origin_hex1903 1.1235354 0.0256818 43.748 < 2e-16 ***
origin_hex1917 0.5538608 0.0257911 21.475 < 2e-16 ***
origin_hex1918 2.4207642 0.0248345 97.476 < 2e-16 ***
origin_hex1919 1.6777517 0.0247227 67.863 < 2e-16 ***
origin_hex1922 -0.3239203 0.0371584 -8.717 < 2e-16 ***
origin_hex1924 0.8583421 0.0258466 33.209 < 2e-16 ***
origin_hex1937 1.1326561 0.0250946 45.135 < 2e-16 ***
origin_hex1938 1.8649262 0.0245913 75.837 < 2e-16 ***
origin_hex1939 2.6507064 0.0245235 108.088 < 2e-16 ***
origin_hex1942 -1.4377100 0.0527900 -27.235 < 2e-16 ***
origin_hex195 -2.0608387 0.0844119 -24.414 < 2e-16 ***
origin_hex1959 0.9073389 0.0256067 35.434 < 2e-16 ***
origin_hex196 -1.5749251 0.0484118 -32.532 < 2e-16 ***
origin_hex1960 2.7252876 0.0243731 111.815 < 2e-16 ***
origin_hex1961 1.3975555 0.0251006 55.678 < 2e-16 ***
origin_hex1962 2.2676868 0.0245696 92.297 < 2e-16 ***
origin_hex1964 -2.3288075 0.0913288 -25.499 < 2e-16 ***
origin_hex197 -2.0035566 0.1124166 -17.823 < 2e-16 ***
origin_hex1979 1.0640461 0.0253756 41.932 < 2e-16 ***
origin_hex1980 -0.4320773 0.0277146 -15.590 < 2e-16 ***
origin_hex1981 2.0854523 0.0245730 84.868 < 2e-16 ***
origin_hex1982 0.9089485 0.0264452 34.371 < 2e-16 ***
origin_hex1983 2.4343304 0.0245712 99.073 < 2e-16 ***
origin_hex1984 1.2417646 0.0252693 49.141 < 2e-16 ***
origin_hex1985 1.5538997 0.0249607 62.254 < 2e-16 ***
origin_hex2001 1.4334532 0.0248684 57.642 < 2e-16 ***
origin_hex2002 2.1112185 0.0244897 86.208 < 2e-16 ***
origin_hex2003 1.7017923 0.0247042 68.887 < 2e-16 ***
origin_hex2004 2.6968505 0.0245376 109.907 < 2e-16 ***
origin_hex2005 2.5001485 0.0245417 101.874 < 2e-16 ***
origin_hex2006 1.0667163 0.0258241 41.307 < 2e-16 ***
origin_hex2007 -0.1306307 0.0288421 -4.529 5.92e-06 ***
origin_hex2022 2.0675309 0.0248470 83.210 < 2e-16 ***
origin_hex2023 2.3399439 0.0244757 95.603 < 2e-16 ***
origin_hex2024 1.8123037 0.0246402 73.551 < 2e-16 ***
origin_hex2025 2.0536191 0.0246183 83.418 < 2e-16 ***
origin_hex2026 0.6551640 0.0267449 24.497 < 2e-16 ***
origin_hex2027 1.9245901 0.0245170 78.500 < 2e-16 ***
origin_hex2043 1.0488691 0.0253083 41.444 < 2e-16 ***
origin_hex2044 2.0806868 0.0245541 84.739 < 2e-16 ***
origin_hex2045 -2.4528313 0.0781923 -31.369 < 2e-16 ***
origin_hex2046 2.0447240 0.0245032 83.447 < 2e-16 ***
origin_hex2047 2.0218108 0.0247128 81.812 < 2e-16 ***
origin_hex2048 2.2077052 0.0246168 89.683 < 2e-16 ***
origin_hex2049 -0.9602557 0.0277203 -34.641 < 2e-16 ***
origin_hex2064 2.1043739 0.0246584 85.341 < 2e-16 ***
origin_hex2065 0.6815604 0.0255357 26.690 < 2e-16 ***
origin_hex2066 0.5659638 0.0317012 17.853 < 2e-16 ***
origin_hex2067 3.0750299 0.0243510 126.280 < 2e-16 ***
origin_hex2068 2.2070332 0.0250974 87.939 < 2e-16 ***
origin_hex2069 1.7363895 0.0247842 70.060 < 2e-16 ***
origin_hex2085 0.4801934 0.0258742 18.559 < 2e-16 ***
origin_hex2086 2.2882675 0.0245230 93.311 < 2e-16 ***
origin_hex2087 1.1414335 0.0251955 45.303 < 2e-16 ***
origin_hex2088 1.8038627 0.0246097 73.299 < 2e-16 ***
origin_hex2089 1.1865108 0.0250204 47.422 < 2e-16 ***
origin_hex2090 2.6571904 0.0244366 108.738 < 2e-16 ***
origin_hex2091 -2.3706832 0.0720937 -32.883 < 2e-16 ***
origin_hex2105 -1.4055747 0.1038909 -13.529 < 2e-16 ***
origin_hex2106 -0.5904103 0.0305473 -19.328 < 2e-16 ***
origin_hex2107 0.4322031 0.0258326 16.731 < 2e-16 ***
origin_hex2108 1.8185007 0.0247700 73.415 < 2e-16 ***
origin_hex2109 1.6392370 0.0246014 66.632 < 2e-16 ***
origin_hex2110 1.4078177 0.0252014 55.863 < 2e-16 ***
origin_hex2111 -1.2900263 0.0460754 -27.998 < 2e-16 ***
origin_hex2128 0.2832964 0.0273886 10.344 < 2e-16 ***
origin_hex2129 -0.0686405 0.0281300 -2.440 0.014683 *
origin_hex2130 1.9203759 0.0245014 78.378 < 2e-16 ***
origin_hex2131 2.1303189 0.0245865 86.646 < 2e-16 ***
origin_hex2132 1.6552753 0.0248847 66.518 < 2e-16 ***
origin_hex2148 0.8384864 0.0265167 31.621 < 2e-16 ***
origin_hex2149 -0.2510281 0.0286401 -8.765 < 2e-16 ***
origin_hex215 -1.6557360 0.0859778 -19.258 < 2e-16 ***
origin_hex2150 1.5312252 0.0246049 62.233 < 2e-16 ***
origin_hex2151 2.5181218 0.0244366 103.047 < 2e-16 ***
origin_hex2152 2.7010657 0.0244765 110.353 < 2e-16 ***
origin_hex2153 1.9016976 0.0247947 76.698 < 2e-16 ***
origin_hex216 2.6735167 0.0247684 107.941 < 2e-16 ***
origin_hex217 -0.8425049 0.0316572 -26.613 < 2e-16 ***
origin_hex2171 1.2562636 0.0251527 49.945 < 2e-16 ***
origin_hex2172 1.6519476 0.0253576 65.146 < 2e-16 ***
origin_hex2173 1.7189093 0.0247173 69.543 < 2e-16 ***
origin_hex2174 2.1050378 0.0247191 85.158 < 2e-16 ***
origin_hex2191 1.0412213 0.0261374 39.836 < 2e-16 ***
origin_hex2192 0.5158443 0.0264223 19.523 < 2e-16 ***
origin_hex2193 1.5767770 0.0248894 63.351 < 2e-16 ***
origin_hex2194 1.8443982 0.0246942 74.689 < 2e-16 ***
origin_hex2195 1.6103516 0.0312886 51.468 < 2e-16 ***
origin_hex2212 -1.2609932 0.0834174 -15.117 < 2e-16 ***
origin_hex2213 -1.5422344 0.0450780 -34.213 < 2e-16 ***
origin_hex2214 -0.1923955 0.0341430 -5.635 1.75e-08 ***
origin_hex2215 1.5574324 0.0250320 62.218 < 2e-16 ***
origin_hex2216 0.7574532 0.0263746 28.719 < 2e-16 ***
origin_hex2233 -1.2789626 0.0456498 -28.017 < 2e-16 ***
origin_hex2234 -0.1989037 0.0309425 -6.428 1.29e-10 ***
origin_hex2235 0.4993945 0.0273458 18.262 < 2e-16 ***
origin_hex2236 0.3389846 0.0272244 12.451 < 2e-16 ***
origin_hex2237 -1.5681504 0.0586358 -26.744 < 2e-16 ***
origin_hex2256 -2.1659602 0.0556937 -38.891 < 2e-16 ***
origin_hex2257 -0.0937605 0.0303261 -3.092 0.001990 **
origin_hex2258 -0.5265894 0.0298275 -17.654 < 2e-16 ***
origin_hex2259 -0.7394840 0.0425993 -17.359 < 2e-16 ***
origin_hex2277 -0.4620386 0.0460485 -10.034 < 2e-16 ***
origin_hex2278 0.4304280 0.0283670 15.174 < 2e-16 ***
origin_hex2279 -0.3351217 0.0307185 -10.909 < 2e-16 ***
origin_hex2280 -2.5109015 0.1033926 -24.285 < 2e-16 ***
origin_hex2297 1.6770111 0.0257091 65.230 < 2e-16 ***
origin_hex23 -0.9705951 0.1014788 -9.565 < 2e-16 ***
origin_hex2300 -1.8683451 0.0642071 -29.099 < 2e-16 ***
origin_hex2301 -0.2688969 0.0302355 -8.893 < 2e-16 ***
origin_hex2318 -0.0163542 0.0302094 -0.541 0.588258
origin_hex2319 0.9196525 0.0261470 35.172 < 2e-16 ***
origin_hex2322 0.7227053 0.0269652 26.801 < 2e-16 ***
origin_hex2337 2.0241564 0.0285318 70.944 < 2e-16 ***
origin_hex2341 1.4957459 0.0257708 58.040 < 2e-16 ***
origin_hex2343 0.3989037 0.0278986 14.298 < 2e-16 ***
origin_hex2361 0.8138944 0.0263334 30.907 < 2e-16 ***
origin_hex2364 -2.1044980 0.0688356 -30.573 < 2e-16 ***
origin_hex237 -2.7885369 0.1580492 -17.643 < 2e-16 ***
origin_hex2379 1.6503018 0.0296016 55.750 < 2e-16 ***
origin_hex238 -1.4997852 0.0565107 -26.540 < 2e-16 ***
origin_hex2384 0.9999326 0.0281199 35.560 < 2e-16 ***
origin_hex239 -2.2888601 0.1599666 -14.308 < 2e-16 ***
origin_hex2405 0.7561547 0.0280448 26.962 < 2e-16 ***
origin_hex2406 -0.8011220 0.0410105 -19.535 < 2e-16 ***
origin_hex2426 1.3677320 0.0356988 38.313 < 2e-16 ***
origin_hex2427 1.5731451 0.0263300 59.747 < 2e-16 ***
origin_hex2505 0.9985043 0.0436050 22.899 < 2e-16 ***
origin_hex257 -1.6751195 0.0614333 -27.267 < 2e-16 ***
origin_hex258 -0.9836483 0.0363440 -27.065 < 2e-16 ***
origin_hex259 -1.3295051 0.0470114 -28.280 < 2e-16 ***
origin_hex278 -0.2889196 0.0453383 -6.373 1.86e-10 ***
origin_hex279 -1.8000867 0.0492019 -36.586 < 2e-16 ***
origin_hex280 -1.6200713 0.0512440 -31.615 < 2e-16 ***
origin_hex298 -3.8011466 0.3342162 -11.373 < 2e-16 ***
origin_hex299 -1.7558076 0.0551938 -31.812 < 2e-16 ***
origin_hex300 1.4165057 0.0257116 55.092 < 2e-16 ***
origin_hex320 -1.7049387 0.0681019 -25.035 < 2e-16 ***
origin_hex321 -1.2833990 0.0751002 -17.089 < 2e-16 ***
origin_hex322 -0.6756688 0.0526106 -12.843 < 2e-16 ***
origin_hex340 -0.3022205 0.0364525 -8.291 < 2e-16 ***
origin_hex341 -2.0140101 0.0503862 -39.971 < 2e-16 ***
origin_hex342 -1.3537276 0.0477346 -28.359 < 2e-16 ***
origin_hex363 -0.5497621 0.0441789 -12.444 < 2e-16 ***
origin_hex364 -0.2827168 0.0358748 -7.881 3.26e-15 ***
origin_hex383 -0.7698838 0.0394630 -19.509 < 2e-16 ***
origin_hex384 -3.7928787 0.0574466 -66.024 < 2e-16 ***
origin_hex385 -0.6036230 0.0519951 -11.609 < 2e-16 ***
origin_hex404 0.0117837 0.0417130 0.282 0.777564
origin_hex405 -1.4239623 0.0542941 -26.227 < 2e-16 ***
origin_hex406 2.6964695 0.0243902 110.556 < 2e-16 ***
origin_hex407 -0.9609592 0.0514044 -18.694 < 2e-16 ***
origin_hex408 0.0444467 0.0332054 1.339 0.180720
origin_hex425 -2.4725645 0.0913294 -27.073 < 2e-16 ***
origin_hex426 -1.3238033 0.0381381 -34.711 < 2e-16 ***
origin_hex427 -1.4550817 0.0428844 -33.930 < 2e-16 ***
origin_hex428 -1.9396608 0.0815455 -23.786 < 2e-16 ***
origin_hex429 0.4309394 0.0331075 13.016 < 2e-16 ***
origin_hex44 -3.1352658 0.1407819 -22.270 < 2e-16 ***
origin_hex446 -1.1016145 0.0635399 -17.337 < 2e-16 ***
origin_hex447 -1.5231744 0.0506505 -30.072 < 2e-16 ***
origin_hex448 -0.6402313 0.0368811 -17.359 < 2e-16 ***
origin_hex449 1.5223865 0.0249846 60.933 < 2e-16 ***
origin_hex450 0.1213793 0.0310999 3.903 9.51e-05 ***
origin_hex46 -1.8590699 0.0906807 -20.501 < 2e-16 ***
origin_hex468 -0.3601401 0.0367142 -9.809 < 2e-16 ***
origin_hex469 -0.1968023 0.0298607 -6.591 4.38e-11 ***
origin_hex470 2.2699255 0.0246470 92.098 < 2e-16 ***
origin_hex471 0.8029461 0.0290087 27.680 < 2e-16 ***
origin_hex488 -1.6008959 0.0622785 -25.705 < 2e-16 ***
origin_hex489 -3.5288324 0.2511754 -14.049 < 2e-16 ***
origin_hex490 0.8778482 0.0267806 32.779 < 2e-16 ***
origin_hex491 1.1016759 0.0253192 43.511 < 2e-16 ***
origin_hex493 -3.1077468 0.1407826 -22.075 < 2e-16 ***
origin_hex494 -1.0849159 0.0636331 -17.050 < 2e-16 ***
origin_hex509 -0.7845356 0.0415232 -18.894 < 2e-16 ***
origin_hex510 -0.3819871 0.0345186 -11.066 < 2e-16 ***
origin_hex511 0.3876989 0.0264395 14.664 < 2e-16 ***
origin_hex512 2.7473087 0.0244409 112.406 < 2e-16 ***
origin_hex513 -0.3098870 0.0340649 -9.097 < 2e-16 ***
origin_hex514 -0.4396772 0.0440076 -9.991 < 2e-16 ***
origin_hex515 -2.6647497 0.1394879 -19.104 < 2e-16 ***
origin_hex530 -1.8046363 0.0844099 -21.379 < 2e-16 ***
origin_hex531 -0.3852144 0.0315015 -12.228 < 2e-16 ***
origin_hex532 -0.6408790 0.0333653 -19.208 < 2e-16 ***
origin_hex533 2.6932082 0.0244489 110.156 < 2e-16 ***
origin_hex534 3.2269770 0.0244900 131.767 < 2e-16 ***
origin_hex536 -0.1184818 0.0348137 -3.403 0.000666 ***
origin_hex537 -2.5181301 0.1394879 -18.053 < 2e-16 ***
origin_hex538 -2.8513953 0.2055619 -13.871 < 2e-16 ***
origin_hex539 -4.9209071 0.5778602 -8.516 < 2e-16 ***
origin_hex551 -1.6167546 0.0591278 -27.343 < 2e-16 ***
origin_hex552 0.1412141 0.0437674 3.226 0.001253 **
origin_hex553 -0.8705533 0.0307317 -28.328 < 2e-16 ***
origin_hex554 2.4678100 0.0244895 100.770 < 2e-16 ***
origin_hex555 2.2178575 0.0251379 88.228 < 2e-16 ***
origin_hex559 -1.9368528 0.0963566 -20.101 < 2e-16 ***
origin_hex560 -0.1824472 0.0531611 -3.432 0.000599 ***
origin_hex572 -3.8668734 0.2249202 -17.192 < 2e-16 ***
origin_hex573 -1.1688640 0.0497938 -23.474 < 2e-16 ***
origin_hex574 -0.8039111 0.0434510 -18.502 < 2e-16 ***
origin_hex575 3.6081410 0.0243243 148.335 < 2e-16 ***
origin_hex576 2.3430598 0.0246917 94.892 < 2e-16 ***
origin_hex578 -2.5681922 0.1099236 -23.363 < 2e-16 ***
origin_hex582 -2.2860198 0.1093279 -20.910 < 2e-16 ***
origin_hex583 -2.9959310 0.1976120 -15.161 < 2e-16 ***
origin_hex584 -0.1660514 0.0601606 -2.760 0.005778 **
origin_hex593 -1.5594103 0.0550824 -28.311 < 2e-16 ***
origin_hex594 -0.2143640 0.0354179 -6.052 1.43e-09 ***
origin_hex595 -0.7412887 0.0312477 -23.723 < 2e-16 ***
origin_hex596 2.1103209 0.0245864 85.833 < 2e-16 ***
origin_hex597 -1.1318485 0.0636333 -17.787 < 2e-16 ***
origin_hex603 -2.0626689 0.1111470 -18.558 < 2e-16 ***
origin_hex604 -3.7009468 0.2683609 -13.791 < 2e-16 ***
origin_hex615 -1.8245108 0.0501211 -36.402 < 2e-16 ***
origin_hex616 -0.7191504 0.0377793 -19.036 < 2e-16 ***
origin_hex617 -0.0539424 0.0297904 -1.811 0.070182 .
origin_hex618 2.5250244 0.0245028 103.050 < 2e-16 ***
origin_hex620 -0.6030743 0.0404076 -14.925 < 2e-16 ***
origin_hex637 -1.4408026 0.0460745 -31.271 < 2e-16 ***
origin_hex638 2.1903587 0.0245608 89.181 < 2e-16 ***
origin_hex657 -0.0236013 0.0290922 -0.811 0.417218
origin_hex658 1.4308076 0.0250198 57.187 < 2e-16 ***
origin_hex659 1.8090091 0.0247959 72.956 < 2e-16 ***
origin_hex66 -2.0507142 0.1273347 -16.105 < 2e-16 ***
origin_hex660 2.8608993 0.0244327 117.093 < 2e-16 ***
origin_hex662 2.3594996 0.0252243 93.541 < 2e-16 ***
origin_hex67 -0.0831442 0.0347133 -2.395 0.016613 *
origin_hex677 -0.2450086 0.0329674 -7.432 1.07e-13 ***
origin_hex678 -1.9482875 0.0498660 -39.070 < 2e-16 ***
origin_hex679 2.6129720 0.0244772 106.751 < 2e-16 ***
origin_hex68 -2.5003843 0.1313620 -19.034 < 2e-16 ***
origin_hex680 2.7921217 0.0244730 114.090 < 2e-16 ***
origin_hex681 1.9086821 0.0256099 74.529 < 2e-16 ***
origin_hex699 -0.3651760 0.0327084 -11.165 < 2e-16 ***
origin_hex700 1.5982676 0.0249503 64.058 < 2e-16 ***
origin_hex701 1.6272875 0.0249692 65.172 < 2e-16 ***
origin_hex702 2.6986637 0.0244614 110.324 < 2e-16 ***
origin_hex704 -0.6343091 0.0400522 -15.837 < 2e-16 ***
origin_hex722 -0.3366533 0.0300837 -11.191 < 2e-16 ***
origin_hex725 -1.4100394 0.0498289 -28.298 < 2e-16 ***
origin_hex741 0.2455293 0.0291753 8.416 < 2e-16 ***
origin_hex743 -0.1800899 0.0271431 -6.635 3.25e-11 ***
origin_hex744 2.0923640 0.0246157 85.001 < 2e-16 ***
origin_hex761 -0.4078059 0.0363398 -11.222 < 2e-16 ***
origin_hex762 1.6561842 0.0251929 65.740 < 2e-16 ***
origin_hex763 -1.8341096 0.0366976 -49.979 < 2e-16 ***
origin_hex764 2.4824942 0.0244542 101.516 < 2e-16 ***
origin_hex765 1.5064839 0.0255301 59.008 < 2e-16 ***
origin_hex767 2.9299600 0.0244919 119.630 < 2e-16 ***
origin_hex772 -1.8411516 0.0759628 -24.238 < 2e-16 ***
origin_hex784 -1.3199110 0.0337032 -39.163 < 2e-16 ***
origin_hex785 1.6522304 0.0245989 67.167 < 2e-16 ***
origin_hex786 1.2463528 0.0249358 49.983 < 2e-16 ***
origin_hex787 1.7924862 0.0252423 71.011 < 2e-16 ***
origin_hex788 2.1840683 0.0247680 88.181 < 2e-16 ***
origin_hex789 0.1923418 0.0263448 7.301 2.86e-13 ***
origin_hex803 -1.7921396 0.0544465 -32.916 < 2e-16 ***
origin_hex804 2.4434841 0.0245586 99.496 < 2e-16 ***
origin_hex805 2.2451476 0.0244546 91.809 < 2e-16 ***
origin_hex806 1.5906586 0.0245950 64.674 < 2e-16 ***
origin_hex807 2.4582764 0.0245809 100.007 < 2e-16 ***
origin_hex808 0.9467177 0.0265246 35.692 < 2e-16 ***
origin_hex809 2.6404616 0.0244624 107.939 < 2e-16 ***
origin_hex810 1.9153810 0.0248296 77.141 < 2e-16 ***
origin_hex814 -0.3174635 0.0366335 -8.666 < 2e-16 ***
origin_hex819 4.6088181 0.0297317 155.014 < 2e-16 ***
origin_hex824 -1.1325198 0.0453358 -24.981 < 2e-16 ***
origin_hex826 -0.1348523 0.0261788 -5.151 2.59e-07 ***
origin_hex827 2.0755337 0.0245147 84.665 < 2e-16 ***
origin_hex828 2.2303237 0.0244946 91.054 < 2e-16 ***
origin_hex829 2.2887108 0.0246261 92.939 < 2e-16 ***
origin_hex830 2.4019448 0.0247401 97.087 < 2e-16 ***
origin_hex831 3.0708573 0.0243906 125.903 < 2e-16 ***
origin_hex832 2.1069748 0.0249433 84.471 < 2e-16 ***
origin_hex835 -1.0811868 0.0379680 -28.476 < 2e-16 ***
origin_hex844 -2.5383178 0.0815457 -31.128 < 2e-16 ***
origin_hex846 1.5306849 0.0247581 61.826 < 2e-16 ***
origin_hex847 0.3247744 0.0257845 12.596 < 2e-16 ***
origin_hex848 1.6881586 0.0246761 68.413 < 2e-16 ***
origin_hex849 0.7050719 0.0254206 27.736 < 2e-16 ***
origin_hex850 1.6674939 0.0247967 67.247 < 2e-16 ***
origin_hex851 2.1774709 0.0245627 88.649 < 2e-16 ***
origin_hex852 1.7689030 0.0249404 70.925 < 2e-16 ***
origin_hex853 2.8936519 0.0244896 118.159 < 2e-16 ***
origin_hex854 -0.5929902 0.0354053 -16.749 < 2e-16 ***
origin_hex855 -1.2592624 0.0497216 -25.326 < 2e-16 ***
origin_hex856 -0.3188275 0.0301306 -10.582 < 2e-16 ***
origin_hex86 -1.1606949 0.0774251 -14.991 < 2e-16 ***
origin_hex866 -0.7877607 0.0399512 -19.718 < 2e-16 ***
origin_hex867 0.4299775 0.0269246 15.970 < 2e-16 ***
origin_hex868 -0.4704380 0.0299387 -15.713 < 2e-16 ***
origin_hex869 2.3225840 0.0248936 93.301 < 2e-16 ***
origin_hex87 -1.4741663 0.0846664 -17.411 < 2e-16 ***
origin_hex870 2.6443052 0.0243971 108.386 < 2e-16 ***
origin_hex871 2.0825569 0.0248864 83.683 < 2e-16 ***
origin_hex872 0.4420899 0.0264999 16.683 < 2e-16 ***
origin_hex873 0.7469832 0.0261928 28.519 < 2e-16 ***
origin_hex874 0.3364649 0.0255001 13.195 < 2e-16 ***
origin_hex875 -2.4943539 0.0759636 -32.836 < 2e-16 ***
origin_hex876 -1.0919623 0.0397009 -27.505 < 2e-16 ***
origin_hex877 -1.8470438 0.0467878 -39.477 < 2e-16 ***
origin_hex88 0.5418056 0.0305202 17.752 < 2e-16 ***
origin_hex887 0.1954720 0.0276330 7.074 1.51e-12 ***
origin_hex888 1.3845864 0.0251444 55.065 < 2e-16 ***
origin_hex889 -1.5966428 0.0416163 -38.366 < 2e-16 ***
origin_hex89 -1.0776900 0.0551941 -19.525 < 2e-16 ***
origin_hex890 2.1797038 0.0244874 89.013 < 2e-16 ***
origin_hex891 0.4935810 0.0266498 18.521 < 2e-16 ***
origin_hex893 2.2859950 0.0245250 93.211 < 2e-16 ***
origin_hex894 0.2912292 0.0265126 10.985 < 2e-16 ***
origin_hex895 -0.0151099 0.0285229 -0.530 0.596287
origin_hex896 -0.5318799 0.0350072 -15.193 < 2e-16 ***
origin_hex897 -2.2418535 0.0683423 -32.803 < 2e-16 ***
origin_hex898 -0.7161403 0.0378161 -18.937 < 2e-16 ***
origin_hex90 -2.2244606 0.1346588 -16.519 < 2e-16 ***
origin_hex908 1.1549523 0.0269410 42.870 < 2e-16 ***
origin_hex909 1.3397449 0.0248401 53.935 < 2e-16 ***
origin_hex910 -0.5660966 0.0296496 -19.093 < 2e-16 ***
origin_hex911 0.6911371 0.0256725 26.921 < 2e-16 ***
origin_hex912 1.7897798 0.0245773 72.822 < 2e-16 ***
origin_hex915 2.1706130 0.0245759 88.323 < 2e-16 ***
origin_hex917 1.5274897 0.0252461 60.504 < 2e-16 ***
origin_hex918 -1.5139676 0.0434667 -34.830 < 2e-16 ***
origin_hex919 1.0283388 0.0257800 39.889 < 2e-16 ***
origin_hex928 0.3607581 0.0276086 13.067 < 2e-16 ***
origin_hex929 1.7761029 0.0246164 72.151 < 2e-16 ***
origin_hex930 2.1336253 0.0244022 87.436 < 2e-16 ***
origin_hex931 -0.4851803 0.0293047 -16.556 < 2e-16 ***
origin_hex932 0.0016080 0.0297782 0.054 0.956936
origin_hex933 1.9054339 0.0248179 76.777 < 2e-16 ***
origin_hex934 -0.6421296 0.0296298 -21.672 < 2e-16 ***
origin_hex935 2.8993519 0.0243954 118.848 < 2e-16 ***
origin_hex938 -3.9969673 0.2145781 -18.627 < 2e-16 ***
origin_hex939 2.9342987 0.0244842 119.845 < 2e-16 ***
origin_hex940 -2.1749441 0.0650028 -33.459 < 2e-16 ***
origin_hex949 0.2485610 0.0272489 9.122 < 2e-16 ***
origin_hex950 2.1195182 0.0246659 85.929 < 2e-16 ***
origin_hex951 2.8811059 0.0243570 118.287 < 2e-16 ***
origin_hex952 -0.0174483 0.0319341 -0.546 0.584803
origin_hex953 0.9357192 0.0259165 36.105 < 2e-16 ***
origin_hex954 -0.6918352 0.0293027 -23.610 < 2e-16 ***
origin_hex955 1.5530909 0.0248235 62.565 < 2e-16 ***
origin_hex956 0.1497703 0.0266938 5.611 2.02e-08 ***
origin_hex957 2.1401107 0.0248172 86.235 < 2e-16 ***
origin_hex959 -0.7832966 0.0540871 -14.482 < 2e-16 ***
origin_hex961 -1.2784075 0.0383517 -33.334 < 2e-16 ***
origin_hex962 4.8985493 0.0245533 199.506 < 2e-16 ***
origin_hex970 0.8686056 0.0254299 34.157 < 2e-16 ***
origin_hex971 2.0385847 0.0244933 83.230 < 2e-16 ***
origin_hex972 1.4761030 0.0246480 59.887 < 2e-16 ***
origin_hex974 1.0564787 0.0252472 41.845 < 2e-16 ***
origin_hex975 0.7779200 0.0257246 30.240 < 2e-16 ***
origin_hex976 -0.6400586 0.0293632 -21.798 < 2e-16 ***
origin_hex977 2.5856233 0.0244779 105.631 < 2e-16 ***
origin_hex978 0.3472719 0.0251430 13.812 < 2e-16 ***
origin_hex982 0.0844246 0.0280702 3.008 0.002633 **
origin_hex983 3.9389477 0.0244624 161.021 < 2e-16 ***
origin_hex984 4.8387086 0.0244665 197.768 < 2e-16 ***
origin_hex991 0.5999422 0.0257195 23.326 < 2e-16 ***
origin_hex992 1.2095545 0.0251177 48.156 < 2e-16 ***
origin_hex993 0.7642609 0.0252670 30.247 < 2e-16 ***
origin_hex994 0.1869182 0.0264842 7.058 1.69e-12 ***
origin_hex995 1.6126169 0.0248068 65.007 < 2e-16 ***
origin_hex996 0.7385155 0.0253029 29.187 < 2e-16 ***
origin_hex997 -0.3619558 0.0378250 -9.569 < 2e-16 ***
origin_hex998 2.4806540 0.0245023 101.242 < 2e-16 ***
origin_hex999 1.4688060 0.0247783 59.278 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 38774300 on 64059 degrees of freedom
AIC: 39132651
Number of Fisher Scoring iterations: 7
Code
CalcRSquared(orcSIM$data$trips, orcSIM$fitted.values)
[1] 0.2825061
- glm from stats R package is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution. In this code, it’s applied to the
trips
as the response variable and a set of predictor variables in thefinal_df
data frame. - The formula
trips ~ log(push_num_bus_stops) + log(push_station_count) + log(push_trainexit_count) + log(push_hdb_sf_count) + log(push_est_pop) + log(distance) + destination_hex
specifies thattrips
is modeled as a function ofpush_num_bus_stops
,push_station_count
,push_trainexit_count
,push_hdb_sf_count
,push_est_pop
,distance
, anddestination_hex
. Thelog
function is applied to transform the predictor variables. - The argument
family = poisson(link = "log")
specifies that a Poisson regression model is fitted with a log link function. - The argument
na.action = na.exclude
specifies that any missing values should be excluded from the model fitting process. - summary from base R package is used to produce result summaries of the results of various model fitting functions. In this code, it’s applied to the fitted model
decSIM
to obtain a summary of the model fit. CalcRSquared
is a user-defined function which is used to calculate the R-squared value of the fitted model. It takes the observed valuesdecSIM$data$trips
and the fitted valuesdecSIM$fitted.values
as inputs.
Key Coefficients: The estimated coefficients from the Poisson regression model provide insights into the relationship between predictor variables and the logarithm of trip counts. Each coefficient represents the change in the log count of trips associated with a one-unit change in the corresponding predictor, holding other variables constant. Highly significant p-values (< 2e-16) emphasize the robustness of these associations.
- Intercept: 13.44 (p < 2e-16)
- log(pull_station_count): -0.403 (p < 2e-16)
- log(pull_trainexit_count): 0.662 (p < 2e-16)
- log(pull_biz_count): 0.108 (p < 2e-16)
- log(pull_entertn_count): -0.089 (p < 2e-16)
- log(pull_fnb_count): -0.134 (p < 2e-16)
- log(pull_finance_count): 0.265 (p < 2e-16)
- log(pull_lnr_count): -0.166 (p < 2e-16)
- log(pull_retails_count): 0.060 (p < 2e-16)
- log(pull_schools_sf_count): 0.230 (p < 2e-16)
- log(distance): -1.239 (p < 2e-16)
- origin_hex1003: 2.486 (p < 2e-16)
- origin_hex1004: 3.300 (p < 2e-16)
- origin_hex1011: -0.784 (p < 2e-16)
- origin_hex1012: -0.841 (p < 2e-16)
- and various other dummy origin variables in which many are statistically significant.
Model Fit: The coefficient of determination (R-squared) for the model is 0.283, indicating that approximately 28.3% of the variability in trip counts can be explained by the selected predictor variables. The significance of individual coefficients and the model’s goodness-of-fit metrics, such as the residual deviance and AIC, support its effectiveness in capturing patterns within the dataset. The p-values associated with each coefficient highlight their statistical significance in influencing trip counts.
Destination Constrained
Code
<- glm(formula = trips ~
decSIM log(push_num_bus_stops) +
log(push_station_count) +
log(push_trainexit_count) +
log(push_hdb_sf_count) +
log(push_est_pop) +
log(distance) +
destination_hex,family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(decSIM)
Call:
glm(formula = trips ~ log(push_num_bus_stops) + log(push_station_count) +
log(push_trainexit_count) + log(push_hdb_sf_count) + log(push_est_pop) +
log(distance) + destination_hex, family = poisson(link = "log"),
data = final_df, na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.390e+01 1.545e-02 899.410 < 2e-16 ***
log(push_num_bus_stops) 3.201e-01 5.263e-04 608.189 < 2e-16 ***
log(push_station_count) -5.477e-01 9.379e-04 -584.008 < 2e-16 ***
log(push_trainexit_count) 4.554e-01 4.126e-04 1103.843 < 2e-16 ***
log(push_hdb_sf_count) 3.981e-01 4.899e-04 812.648 < 2e-16 ***
log(push_est_pop) -1.942e-02 1.976e-04 -98.262 < 2e-16 ***
log(distance) -1.260e+00 2.167e-04 -5814.120 < 2e-16 ***
destination_hex1003 1.793e+00 1.559e-02 114.997 < 2e-16 ***
destination_hex1004 8.564e-01 1.595e-02 53.680 < 2e-16 ***
destination_hex1011 -4.632e-02 1.931e-02 -2.398 0.016479 *
destination_hex1012 1.545e+00 1.634e-02 94.547 < 2e-16 ***
destination_hex1013 1.337e-01 1.700e-02 7.864 3.71e-15 ***
destination_hex1014 -1.525e+00 2.192e-02 -69.565 < 2e-16 ***
destination_hex1015 1.265e+00 1.583e-02 79.926 < 2e-16 ***
destination_hex1016 1.288e+00 1.572e-02 81.897 < 2e-16 ***
destination_hex1018 -2.001e-01 1.940e-02 -10.311 < 2e-16 ***
destination_hex1019 3.078e-01 1.630e-02 18.883 < 2e-16 ***
destination_hex1023 -7.778e-01 2.001e-02 -38.864 < 2e-16 ***
destination_hex1024 4.129e-01 1.653e-02 24.979 < 2e-16 ***
destination_hex1025 -3.483e+00 6.635e-02 -52.493 < 2e-16 ***
destination_hex1033 4.810e-01 1.665e-02 28.888 < 2e-16 ***
destination_hex1034 1.102e+00 1.591e-02 69.243 < 2e-16 ***
destination_hex1035 8.820e-01 1.598e-02 55.211 < 2e-16 ***
destination_hex1036 1.391e+00 1.574e-02 88.358 < 2e-16 ***
destination_hex1037 1.597e-01 1.640e-02 9.736 < 2e-16 ***
destination_hex1043 5.198e-01 1.867e-02 27.844 < 2e-16 ***
destination_hex1045 2.426e-01 1.631e-02 14.877 < 2e-16 ***
destination_hex1046 8.477e-01 1.627e-02 52.116 < 2e-16 ***
destination_hex1053 1.019e+00 1.597e-02 63.824 < 2e-16 ***
destination_hex1054 7.985e-01 1.603e-02 49.800 < 2e-16 ***
destination_hex1055 -1.017e-01 1.721e-02 -5.911 3.40e-09 ***
destination_hex1056 -7.566e-01 1.875e-02 -40.358 < 2e-16 ***
destination_hex1064 -2.833e+00 8.838e-02 -32.055 < 2e-16 ***
destination_hex1066 1.362e+00 1.575e-02 86.486 < 2e-16 ***
destination_hex1067 1.239e+00 1.652e-02 74.995 < 2e-16 ***
destination_hex1074 -1.023e+00 2.034e-02 -50.310 < 2e-16 ***
destination_hex1075 6.905e-01 1.639e-02 42.142 < 2e-16 ***
destination_hex1076 -5.417e-02 1.665e-02 -3.252 0.001145 **
destination_hex1077 -6.685e-01 1.831e-02 -36.506 < 2e-16 ***
destination_hex1079 4.121e-01 1.632e-02 25.251 < 2e-16 ***
destination_hex1085 -1.191e+00 5.822e-02 -20.461 < 2e-16 ***
destination_hex1087 2.267e-01 1.638e-02 13.839 < 2e-16 ***
destination_hex1088 1.061e+00 1.617e-02 65.620 < 2e-16 ***
destination_hex109 3.783e-01 2.959e-02 12.784 < 2e-16 ***
destination_hex1094 -3.410e+00 5.050e-02 -67.529 < 2e-16 ***
destination_hex1095 7.695e-02 2.024e-02 3.802 0.000144 ***
destination_hex1096 -6.393e-02 2.118e-02 -3.018 0.002541 **
destination_hex1097 6.845e-01 1.583e-02 43.245 < 2e-16 ***
destination_hex1098 -1.614e+00 2.641e-02 -61.130 < 2e-16 ***
destination_hex1099 -1.727e-01 1.706e-02 -10.119 < 2e-16 ***
destination_hex110 -2.178e+00 1.017e-01 -21.427 < 2e-16 ***
destination_hex1105 1.587e+00 1.753e-02 90.536 < 2e-16 ***
destination_hex1106 -3.025e+00 8.620e-02 -35.097 < 2e-16 ***
destination_hex1107 2.197e-02 1.692e-02 1.299 0.194102
destination_hex1108 2.436e+00 1.542e-02 158.018 < 2e-16 ***
destination_hex1109 -1.071e+00 2.583e-02 -41.469 < 2e-16 ***
destination_hex111 1.353e+00 1.894e-02 71.463 < 2e-16 ***
destination_hex1116 -7.371e-02 1.749e-02 -4.215 2.50e-05 ***
destination_hex1117 2.623e-01 1.671e-02 15.694 < 2e-16 ***
destination_hex1118 -1.650e+00 2.324e-02 -70.972 < 2e-16 ***
destination_hex1119 -7.977e-01 1.834e-02 -43.487 < 2e-16 ***
destination_hex112 -1.093e+00 3.367e-02 -32.451 < 2e-16 ***
destination_hex1120 -1.147e+00 2.251e-02 -50.945 < 2e-16 ***
destination_hex1129 -1.444e-01 1.708e-02 -8.452 < 2e-16 ***
destination_hex1130 4.877e-01 1.621e-02 30.088 < 2e-16 ***
destination_hex1131 1.796e+00 1.607e-02 111.753 < 2e-16 ***
destination_hex1136 1.076e+00 1.596e-02 67.403 < 2e-16 ***
destination_hex1138 -1.131e+00 2.253e-02 -50.185 < 2e-16 ***
destination_hex1139 -3.823e-01 1.673e-02 -22.856 < 2e-16 ***
destination_hex1141 -2.098e-01 1.703e-02 -12.321 < 2e-16 ***
destination_hex1148 -9.444e-01 3.293e-02 -28.680 < 2e-16 ***
destination_hex1149 -3.512e-01 2.010e-02 -17.473 < 2e-16 ***
destination_hex1150 -8.064e-02 1.661e-02 -4.856 1.20e-06 ***
destination_hex1151 -2.488e-01 1.654e-02 -15.041 < 2e-16 ***
destination_hex1158 -1.247e+00 1.844e-02 -67.649 < 2e-16 ***
destination_hex1159 -8.397e-01 1.756e-02 -47.812 < 2e-16 ***
destination_hex1160 8.363e-01 1.581e-02 52.905 < 2e-16 ***
destination_hex1171 3.593e-01 1.629e-02 22.050 < 2e-16 ***
destination_hex1172 1.791e+00 1.554e-02 115.261 < 2e-16 ***
destination_hex1173 1.215e+00 1.604e-02 75.781 < 2e-16 ***
destination_hex1174 -1.776e+00 4.413e-02 -40.245 < 2e-16 ***
destination_hex1178 1.191e+00 1.568e-02 75.930 < 2e-16 ***
destination_hex1179 2.404e-01 1.609e-02 14.939 < 2e-16 ***
destination_hex1180 3.041e-01 1.601e-02 18.991 < 2e-16 ***
destination_hex1181 -6.737e-01 1.763e-02 -38.218 < 2e-16 ***
destination_hex1183 9.048e-01 1.598e-02 56.629 < 2e-16 ***
destination_hex1190 -9.883e-01 3.245e-02 -30.456 < 2e-16 ***
destination_hex1192 8.286e-01 1.613e-02 51.385 < 2e-16 ***
destination_hex1193 5.137e-01 1.614e-02 31.828 < 2e-16 ***
destination_hex1194 8.413e-01 1.637e-02 51.402 < 2e-16 ***
destination_hex1200 1.808e-05 1.674e-02 0.001 0.999138
destination_hex1201 -2.918e-01 1.688e-02 -17.290 < 2e-16 ***
destination_hex1203 -2.667e-01 1.716e-02 -15.540 < 2e-16 ***
destination_hex1204 -3.597e-01 1.755e-02 -20.497 < 2e-16 ***
destination_hex1211 -4.598e+00 2.778e-01 -16.552 < 2e-16 ***
destination_hex1214 -4.827e-01 1.741e-02 -27.728 < 2e-16 ***
destination_hex1215 1.826e-01 1.872e-02 9.753 < 2e-16 ***
destination_hex1216 5.011e-01 1.819e-02 27.546 < 2e-16 ***
destination_hex1220 3.290e-01 1.639e-02 20.075 < 2e-16 ***
destination_hex1221 5.825e-01 1.581e-02 36.850 < 2e-16 ***
destination_hex1222 -6.829e-01 1.953e-02 -34.960 < 2e-16 ***
destination_hex1223 -8.207e-01 1.881e-02 -43.642 < 2e-16 ***
destination_hex1224 -1.766e-01 1.713e-02 -10.309 < 2e-16 ***
destination_hex1231 -1.737e+00 5.919e-02 -29.349 < 2e-16 ***
destination_hex1232 -3.030e-01 2.876e-02 -10.534 < 2e-16 ***
destination_hex1235 4.485e-01 1.633e-02 27.464 < 2e-16 ***
destination_hex1236 2.133e-01 1.728e-02 12.344 < 2e-16 ***
destination_hex1241 -1.058e+00 1.910e-02 -55.407 < 2e-16 ***
destination_hex1242 -8.474e-01 1.763e-02 -48.071 < 2e-16 ***
destination_hex1243 3.250e-01 1.608e-02 20.206 < 2e-16 ***
destination_hex1246 -5.109e-01 1.741e-02 -29.349 < 2e-16 ***
destination_hex1256 -8.164e-01 1.843e-02 -44.303 < 2e-16 ***
destination_hex1257 6.234e-01 1.642e-02 37.965 < 2e-16 ***
destination_hex1258 1.196e+00 1.611e-02 74.243 < 2e-16 ***
destination_hex1262 -1.117e+00 1.970e-02 -56.711 < 2e-16 ***
destination_hex1263 8.512e-01 1.566e-02 54.343 < 2e-16 ***
destination_hex1264 1.069e-01 1.692e-02 6.321 2.60e-10 ***
destination_hex1265 2.483e-02 1.707e-02 1.455 0.145730
destination_hex1266 2.624e-01 1.666e-02 15.750 < 2e-16 ***
destination_hex1267 -1.298e+00 2.218e-02 -58.532 < 2e-16 ***
destination_hex1272 -4.103e+00 1.122e-01 -36.583 < 2e-16 ***
destination_hex1273 5.160e-01 1.682e-02 30.671 < 2e-16 ***
destination_hex1277 6.034e-01 1.588e-02 37.997 < 2e-16 ***
destination_hex1278 3.472e-01 1.642e-02 21.147 < 2e-16 ***
destination_hex128 7.165e-01 2.680e-02 26.739 < 2e-16 ***
destination_hex1283 1.427e+00 1.565e-02 91.190 < 2e-16 ***
destination_hex1284 8.501e-01 1.574e-02 53.993 < 2e-16 ***
destination_hex1285 4.384e-01 1.591e-02 27.555 < 2e-16 ***
destination_hex1286 -4.630e-01 1.804e-02 -25.665 < 2e-16 ***
destination_hex1289 -2.761e+00 4.249e-02 -64.992 < 2e-16 ***
destination_hex129 -2.283e+00 1.136e-01 -20.110 < 2e-16 ***
destination_hex1293 -3.778e+00 7.590e-02 -49.772 < 2e-16 ***
destination_hex1294 2.472e-01 1.746e-02 14.159 < 2e-16 ***
destination_hex1295 -1.884e+00 2.694e-02 -69.923 < 2e-16 ***
destination_hex1298 -1.194e-01 1.650e-02 -7.237 4.60e-13 ***
destination_hex1299 -4.405e-01 1.759e-02 -25.041 < 2e-16 ***
destination_hex130 2.482e-01 2.661e-02 9.329 < 2e-16 ***
destination_hex1304 2.449e-01 1.633e-02 14.992 < 2e-16 ***
destination_hex1305 3.816e-01 1.584e-02 24.081 < 2e-16 ***
destination_hex1307 -1.179e+00 2.450e-02 -48.132 < 2e-16 ***
destination_hex1308 3.049e-01 1.620e-02 18.823 < 2e-16 ***
destination_hex131 -2.545e-01 2.875e-02 -8.853 < 2e-16 ***
destination_hex1310 -4.862e+00 1.896e-01 -25.642 < 2e-16 ***
destination_hex1316 -1.443e+00 2.196e-02 -65.718 < 2e-16 ***
destination_hex1317 -1.590e+00 2.010e-02 -79.108 < 2e-16 ***
destination_hex1318 -1.607e+00 2.192e-02 -73.340 < 2e-16 ***
destination_hex1319 1.206e+00 1.566e-02 77.001 < 2e-16 ***
destination_hex132 7.925e-01 2.123e-02 37.335 < 2e-16 ***
destination_hex1320 -9.971e-01 2.030e-02 -49.110 < 2e-16 ***
destination_hex1324 3.387e-01 2.175e-02 15.573 < 2e-16 ***
destination_hex1325 -1.341e+00 2.079e-02 -64.502 < 2e-16 ***
destination_hex1326 -2.065e-02 1.623e-02 -1.272 0.203225
destination_hex1327 2.162e-01 1.612e-02 13.410 < 2e-16 ***
destination_hex1328 1.058e-01 1.655e-02 6.393 1.63e-10 ***
destination_hex1329 1.336e-01 1.749e-02 7.640 2.18e-14 ***
destination_hex133 3.071e-01 1.961e-02 15.660 < 2e-16 ***
destination_hex1330 1.382e+00 1.611e-02 85.800 < 2e-16 ***
destination_hex1331 -5.078e+00 2.587e-01 -19.634 < 2e-16 ***
destination_hex1333 -1.663e+00 2.224e-02 -74.773 < 2e-16 ***
destination_hex1334 -1.032e+00 2.007e-02 -51.431 < 2e-16 ***
destination_hex1335 9.888e-01 1.623e-02 60.941 < 2e-16 ***
destination_hex1336 -2.871e+00 5.788e-02 -49.603 < 2e-16 ***
destination_hex1337 -2.588e+00 3.307e-02 -78.266 < 2e-16 ***
destination_hex1338 -2.478e+00 3.067e-02 -80.788 < 2e-16 ***
destination_hex1339 1.025e+00 1.573e-02 65.147 < 2e-16 ***
destination_hex134 4.467e-02 1.919e-02 2.328 0.019908 *
destination_hex1340 -4.382e-01 1.777e-02 -24.661 < 2e-16 ***
destination_hex1341 -3.768e+00 9.744e-02 -38.670 < 2e-16 ***
destination_hex1346 1.925e-01 1.683e-02 11.436 < 2e-16 ***
destination_hex1347 1.114e+00 1.570e-02 70.984 < 2e-16 ***
destination_hex1348 -1.918e-01 1.656e-02 -11.586 < 2e-16 ***
destination_hex1349 7.798e-01 1.614e-02 48.315 < 2e-16 ***
destination_hex1350 -3.331e-01 1.972e-02 -16.893 < 2e-16 ***
destination_hex1353 -2.409e-01 1.670e-02 -14.430 < 2e-16 ***
destination_hex1354 -1.107e+00 1.937e-02 -57.177 < 2e-16 ***
destination_hex1355 -8.111e-01 1.883e-02 -43.078 < 2e-16 ***
destination_hex1357 -1.393e+00 2.405e-02 -57.932 < 2e-16 ***
destination_hex1358 1.025e+00 1.574e-02 65.147 < 2e-16 ***
destination_hex1359 -8.030e-02 1.662e-02 -4.832 1.35e-06 ***
destination_hex1360 -4.203e-01 1.693e-02 -24.824 < 2e-16 ***
destination_hex1361 -3.636e-01 1.756e-02 -20.712 < 2e-16 ***
destination_hex1362 -1.897e+00 3.278e-02 -57.875 < 2e-16 ***
destination_hex1368 -7.603e-01 1.766e-02 -43.057 < 2e-16 ***
destination_hex1369 -7.366e-01 1.747e-02 -42.173 < 2e-16 ***
destination_hex1370 9.789e-01 1.571e-02 62.316 < 2e-16 ***
destination_hex1371 9.192e-02 1.706e-02 5.390 7.05e-08 ***
destination_hex1372 5.837e-02 1.679e-02 3.478 0.000506 ***
destination_hex1373 -3.007e+00 3.646e-02 -82.457 < 2e-16 ***
destination_hex1374 -1.652e+00 2.289e-02 -72.177 < 2e-16 ***
destination_hex1375 3.151e-01 1.691e-02 18.633 < 2e-16 ***
destination_hex1376 -1.355e+00 2.273e-02 -59.612 < 2e-16 ***
destination_hex1379 -3.688e+00 6.508e-02 -56.665 < 2e-16 ***
destination_hex1380 1.795e+00 1.551e-02 115.728 < 2e-16 ***
destination_hex1381 2.084e+00 1.546e-02 134.792 < 2e-16 ***
destination_hex1382 1.215e+00 1.589e-02 76.461 < 2e-16 ***
destination_hex1383 -1.592e+00 2.467e-02 -64.527 < 2e-16 ***
destination_hex1388 -3.060e-02 1.653e-02 -1.852 0.064064 .
destination_hex1389 -4.184e-01 1.687e-02 -24.798 < 2e-16 ***
destination_hex1390 -6.886e-02 1.661e-02 -4.146 3.38e-05 ***
destination_hex1391 7.996e-01 1.604e-02 49.854 < 2e-16 ***
destination_hex1392 6.538e-01 1.962e-02 33.330 < 2e-16 ***
destination_hex1393 -7.398e-01 1.750e-02 -42.268 < 2e-16 ***
destination_hex1394 -2.716e-01 1.650e-02 -16.466 < 2e-16 ***
destination_hex1395 -4.029e-01 1.680e-02 -23.982 < 2e-16 ***
destination_hex1396 5.410e-01 1.614e-02 33.518 < 2e-16 ***
destination_hex1397 -8.059e-01 1.705e-02 -47.277 < 2e-16 ***
destination_hex1398 -9.055e-01 2.061e-02 -43.935 < 2e-16 ***
destination_hex1400 -9.538e-01 1.886e-02 -50.570 < 2e-16 ***
destination_hex1401 9.428e-01 1.564e-02 60.298 < 2e-16 ***
destination_hex1402 2.715e-01 1.619e-02 16.765 < 2e-16 ***
destination_hex1404 -3.211e-01 2.661e-02 -12.064 < 2e-16 ***
destination_hex1410 8.243e-01 1.576e-02 52.307 < 2e-16 ***
destination_hex1411 -1.360e-01 1.673e-02 -8.133 4.18e-16 ***
destination_hex1412 7.379e-01 1.582e-02 46.631 < 2e-16 ***
destination_hex1413 3.905e-01 1.619e-02 24.112 < 2e-16 ***
destination_hex1414 -2.458e-01 1.635e-02 -15.035 < 2e-16 ***
destination_hex1415 2.129e-01 1.619e-02 13.148 < 2e-16 ***
destination_hex1416 -4.761e-01 1.707e-02 -27.897 < 2e-16 ***
destination_hex1417 -8.541e-02 1.629e-02 -5.243 1.58e-07 ***
destination_hex1418 2.283e-02 1.627e-02 1.403 0.160579
destination_hex1419 -4.680e-01 1.710e-02 -27.364 < 2e-16 ***
destination_hex1422 1.115e-01 1.645e-02 6.779 1.21e-11 ***
destination_hex1423 6.753e-01 1.610e-02 41.946 < 2e-16 ***
destination_hex1430 4.356e-01 1.605e-02 27.136 < 2e-16 ***
destination_hex1431 1.035e+00 1.571e-02 65.887 < 2e-16 ***
destination_hex1432 6.232e-01 1.583e-02 39.375 < 2e-16 ***
destination_hex1433 6.139e-02 1.781e-02 3.447 0.000567 ***
destination_hex1434 7.111e-01 1.581e-02 44.989 < 2e-16 ***
destination_hex1435 2.650e-01 1.598e-02 16.585 < 2e-16 ***
destination_hex1436 -8.254e-01 1.860e-02 -44.381 < 2e-16 ***
destination_hex1437 -2.830e-01 1.654e-02 -17.112 < 2e-16 ***
destination_hex1438 3.620e-01 1.585e-02 22.837 < 2e-16 ***
destination_hex1439 1.131e+00 1.566e-02 72.196 < 2e-16 ***
destination_hex1440 4.837e-01 1.643e-02 29.435 < 2e-16 ***
destination_hex1442 -1.685e+00 2.246e-02 -75.016 < 2e-16 ***
destination_hex1443 1.149e-01 1.633e-02 7.037 1.97e-12 ***
destination_hex1444 1.064e+00 1.634e-02 65.132 < 2e-16 ***
destination_hex1452 1.008e+00 1.562e-02 64.504 < 2e-16 ***
destination_hex1453 4.710e-01 1.606e-02 29.322 < 2e-16 ***
destination_hex1454 -6.891e-01 1.889e-02 -36.486 < 2e-16 ***
destination_hex1455 -3.585e-02 1.678e-02 -2.136 0.032673 *
destination_hex1456 1.154e-01 1.631e-02 7.076 1.48e-12 ***
destination_hex1457 1.059e+00 1.590e-02 66.625 < 2e-16 ***
destination_hex1458 1.691e+00 1.549e-02 109.192 < 2e-16 ***
destination_hex1459 -8.555e-01 1.727e-02 -49.536 < 2e-16 ***
destination_hex1460 4.406e-01 1.588e-02 27.753 < 2e-16 ***
destination_hex1461 2.572e-01 1.659e-02 15.499 < 2e-16 ***
destination_hex1464 -3.895e-01 1.680e-02 -23.190 < 2e-16 ***
destination_hex1465 -6.100e-01 1.848e-02 -33.016 < 2e-16 ***
destination_hex1472 2.412e-02 1.682e-02 1.433 0.151772
destination_hex1473 1.029e+00 1.572e-02 65.483 < 2e-16 ***
destination_hex1474 7.887e-01 1.566e-02 50.354 < 2e-16 ***
destination_hex1475 7.396e-01 1.582e-02 46.736 < 2e-16 ***
destination_hex1476 -3.581e-01 1.681e-02 -21.301 < 2e-16 ***
destination_hex1477 1.599e+00 1.547e-02 103.369 < 2e-16 ***
destination_hex1478 3.561e-02 1.615e-02 2.205 0.027427 *
destination_hex1479 -7.076e-01 1.697e-02 -41.689 < 2e-16 ***
destination_hex1480 1.605e+00 1.548e-02 103.627 < 2e-16 ***
destination_hex1481 1.540e-01 1.634e-02 9.425 < 2e-16 ***
destination_hex1482 1.059e+00 1.600e-02 66.182 < 2e-16 ***
destination_hex1485 -1.035e+00 1.966e-02 -52.644 < 2e-16 ***
destination_hex1494 6.830e-01 1.586e-02 43.054 < 2e-16 ***
destination_hex1495 -5.877e-02 1.636e-02 -3.591 0.000329 ***
destination_hex1496 4.609e-01 1.568e-02 29.393 < 2e-16 ***
destination_hex1497 -2.518e-01 1.688e-02 -14.920 < 2e-16 ***
destination_hex1498 -1.203e-01 1.644e-02 -7.317 2.54e-13 ***
destination_hex1499 2.078e-01 1.591e-02 13.056 < 2e-16 ***
destination_hex150 3.526e-01 2.932e-02 12.026 < 2e-16 ***
destination_hex1500 -2.752e-01 1.739e-02 -15.823 < 2e-16 ***
destination_hex1501 6.445e-01 1.577e-02 40.875 < 2e-16 ***
destination_hex1502 5.512e-01 1.586e-02 34.753 < 2e-16 ***
destination_hex1506 -5.895e+00 6.484e-02 -90.922 < 2e-16 ***
destination_hex151 1.969e-01 2.609e-02 7.549 4.38e-14 ***
destination_hex1515 -5.665e-01 2.050e-02 -27.638 < 2e-16 ***
destination_hex1516 3.663e-01 1.567e-02 23.371 < 2e-16 ***
destination_hex1517 5.723e-03 1.655e-02 0.346 0.729500
destination_hex1518 -5.958e-01 1.713e-02 -34.788 < 2e-16 ***
destination_hex1519 -3.320e-01 1.718e-02 -19.323 < 2e-16 ***
destination_hex152 1.780e+00 2.031e-02 87.647 < 2e-16 ***
destination_hex1520 -4.539e-01 1.670e-02 -27.180 < 2e-16 ***
destination_hex1521 -4.267e-01 1.695e-02 -25.168 < 2e-16 ***
destination_hex1522 3.832e-01 1.600e-02 23.949 < 2e-16 ***
destination_hex1523 1.316e+00 1.586e-02 82.993 < 2e-16 ***
destination_hex1524 -6.775e-01 1.909e-02 -35.486 < 2e-16 ***
destination_hex1527 -2.624e+00 3.236e-02 -81.089 < 2e-16 ***
destination_hex153 3.493e-01 1.978e-02 17.659 < 2e-16 ***
destination_hex1535 -1.150e+00 5.261e-02 -21.854 < 2e-16 ***
destination_hex1536 -1.271e+00 2.646e-02 -48.052 < 2e-16 ***
destination_hex1537 2.016e-01 1.633e-02 12.340 < 2e-16 ***
destination_hex1538 1.818e-01 1.608e-02 11.304 < 2e-16 ***
destination_hex1539 3.010e-01 1.591e-02 18.911 < 2e-16 ***
destination_hex154 -9.531e-01 3.063e-02 -31.118 < 2e-16 ***
destination_hex1540 -3.304e-01 1.641e-02 -20.134 < 2e-16 ***
destination_hex1541 -8.847e-02 1.673e-02 -5.288 1.24e-07 ***
destination_hex1542 -5.595e-01 1.796e-02 -31.155 < 2e-16 ***
destination_hex1543 -6.523e-01 2.972e-02 -21.945 < 2e-16 ***
destination_hex1544 -6.835e-01 1.766e-02 -38.705 < 2e-16 ***
destination_hex1547 -6.849e-01 2.123e-02 -32.257 < 2e-16 ***
destination_hex155 -2.559e-01 2.294e-02 -11.157 < 2e-16 ***
destination_hex1556 -1.861e+00 6.089e-02 -30.564 < 2e-16 ***
destination_hex1557 -1.001e+00 2.190e-02 -45.702 < 2e-16 ***
destination_hex1558 4.321e-01 1.960e-02 22.053 < 2e-16 ***
destination_hex1559 7.442e-01 1.574e-02 47.268 < 2e-16 ***
destination_hex156 3.089e-01 2.394e-02 12.901 < 2e-16 ***
destination_hex1560 8.169e-01 1.572e-02 51.968 < 2e-16 ***
destination_hex1561 1.660e-02 1.652e-02 1.005 0.315016
destination_hex1562 -2.123e+00 2.259e-02 -93.950 < 2e-16 ***
destination_hex1563 -1.030e+00 1.774e-02 -58.083 < 2e-16 ***
destination_hex1564 -4.310e-01 1.727e-02 -24.954 < 2e-16 ***
destination_hex1565 9.250e-02 1.644e-02 5.625 1.86e-08 ***
destination_hex1566 -1.553e+00 2.232e-02 -69.559 < 2e-16 ***
destination_hex1567 -1.070e+00 2.303e-02 -46.437 < 2e-16 ***
destination_hex1568 -3.594e-01 1.941e-02 -18.519 < 2e-16 ***
destination_hex1578 -2.016e+00 1.002e-01 -20.124 < 2e-16 ***
destination_hex1580 -2.204e+00 2.814e-02 -78.314 < 2e-16 ***
destination_hex1581 5.030e-01 1.595e-02 31.532 < 2e-16 ***
destination_hex1582 4.717e-01 1.575e-02 29.946 < 2e-16 ***
destination_hex1583 -1.526e+00 2.505e-02 -60.930 < 2e-16 ***
destination_hex1584 -1.087e+00 1.938e-02 -56.103 < 2e-16 ***
destination_hex1585 -6.352e-02 1.698e-02 -3.741 0.000184 ***
destination_hex1586 5.320e-01 1.608e-02 33.092 < 2e-16 ***
destination_hex1589 -1.485e+00 2.643e-02 -56.179 < 2e-16 ***
destination_hex1590 -3.475e-01 2.011e-02 -17.279 < 2e-16 ***
destination_hex1600 -2.108e-01 2.071e-02 -10.176 < 2e-16 ***
destination_hex1601 -7.604e-01 1.681e-02 -45.238 < 2e-16 ***
destination_hex1602 8.902e-02 1.658e-02 5.369 7.93e-08 ***
destination_hex1603 8.863e-01 1.575e-02 56.266 < 2e-16 ***
destination_hex1604 -1.169e+00 1.834e-02 -63.713 < 2e-16 ***
destination_hex1605 -2.505e-01 1.627e-02 -15.401 < 2e-16 ***
destination_hex1606 -3.168e-01 2.015e-02 -15.722 < 2e-16 ***
destination_hex1607 6.891e-01 1.583e-02 43.535 < 2e-16 ***
destination_hex1608 4.849e-02 1.644e-02 2.950 0.003182 **
destination_hex1609 4.770e-01 1.606e-02 29.703 < 2e-16 ***
destination_hex1610 -1.365e+00 3.040e-02 -44.904 < 2e-16 ***
destination_hex1622 9.288e-01 1.862e-02 49.883 < 2e-16 ***
destination_hex1623 4.929e-01 1.583e-02 31.131 < 2e-16 ***
destination_hex1624 9.151e-01 1.572e-02 58.213 < 2e-16 ***
destination_hex1625 2.211e-01 1.623e-02 13.619 < 2e-16 ***
destination_hex1626 1.965e+00 1.544e-02 127.236 < 2e-16 ***
destination_hex1627 -9.555e-01 1.757e-02 -54.372 < 2e-16 ***
destination_hex1628 1.256e+00 1.565e-02 80.272 < 2e-16 ***
destination_hex1629 -1.551e+00 2.067e-02 -75.008 < 2e-16 ***
destination_hex1630 -8.771e-01 1.895e-02 -46.284 < 2e-16 ***
destination_hex1631 -1.529e+00 2.416e-02 -63.281 < 2e-16 ***
destination_hex1642 -1.924e+00 3.516e-02 -54.705 < 2e-16 ***
destination_hex1643 4.098e-02 1.630e-02 2.514 0.011924 *
destination_hex1644 5.616e-02 1.718e-02 3.269 0.001080 **
destination_hex1645 -7.722e-02 1.646e-02 -4.693 2.70e-06 ***
destination_hex1646 2.520e-01 1.704e-02 14.785 < 2e-16 ***
destination_hex1647 -4.604e-01 1.639e-02 -28.097 < 2e-16 ***
destination_hex1648 -2.019e-01 1.629e-02 -12.397 < 2e-16 ***
destination_hex1649 5.802e-01 1.581e-02 36.705 < 2e-16 ***
destination_hex1650 -2.015e-01 1.691e-02 -11.915 < 2e-16 ***
destination_hex1664 -3.888e+00 1.173e-01 -33.157 < 2e-16 ***
destination_hex1665 6.905e-01 1.578e-02 43.767 < 2e-16 ***
destination_hex1666 7.269e-01 1.578e-02 46.079 < 2e-16 ***
destination_hex1667 -4.379e-01 2.189e-02 -20.006 < 2e-16 ***
destination_hex1668 -3.052e-01 1.664e-02 -18.340 < 2e-16 ***
destination_hex1670 2.845e-01 1.591e-02 17.884 < 2e-16 ***
destination_hex1671 -2.592e-01 1.843e-02 -14.068 < 2e-16 ***
destination_hex1672 -9.304e-01 1.910e-02 -48.701 < 2e-16 ***
destination_hex1684 2.610e-01 1.785e-02 14.623 < 2e-16 ***
destination_hex1685 -4.604e-01 1.750e-02 -26.305 < 2e-16 ***
destination_hex1686 1.349e-01 1.627e-02 8.294 < 2e-16 ***
destination_hex1687 4.259e-01 1.664e-02 25.587 < 2e-16 ***
destination_hex1688 -2.666e-01 1.663e-02 -16.030 < 2e-16 ***
destination_hex1689 -9.312e-01 1.801e-02 -51.707 < 2e-16 ***
destination_hex1690 -1.546e+00 1.971e-02 -78.434 < 2e-16 ***
destination_hex1691 4.697e-01 1.587e-02 29.597 < 2e-16 ***
destination_hex1692 -1.403e+00 2.034e-02 -69.005 < 2e-16 ***
destination_hex1706 1.063e-01 1.701e-02 6.250 4.11e-10 ***
destination_hex1707 -7.939e-01 1.721e-02 -46.123 < 2e-16 ***
destination_hex1708 -1.309e-01 1.644e-02 -7.962 1.70e-15 ***
destination_hex1709 5.339e-01 1.593e-02 33.513 < 2e-16 ***
destination_hex1710 4.594e-01 1.606e-02 28.611 < 2e-16 ***
destination_hex1711 1.146e+00 1.564e-02 73.288 < 2e-16 ***
destination_hex1712 2.995e-01 1.584e-02 18.907 < 2e-16 ***
destination_hex1713 -1.983e+00 2.146e-02 -92.429 < 2e-16 ***
destination_hex1714 -5.144e-01 1.723e-02 -29.855 < 2e-16 ***
destination_hex172 -1.493e+00 4.682e-02 -31.879 < 2e-16 ***
destination_hex1727 6.123e-01 1.616e-02 37.893 < 2e-16 ***
destination_hex1728 5.002e-01 1.589e-02 31.473 < 2e-16 ***
destination_hex1729 5.959e-01 1.582e-02 37.665 < 2e-16 ***
destination_hex1730 -5.315e-01 1.751e-02 -30.360 < 2e-16 ***
destination_hex1731 2.908e-01 1.608e-02 18.088 < 2e-16 ***
destination_hex1732 1.411e-01 1.592e-02 8.860 < 2e-16 ***
destination_hex1733 -9.192e-01 1.720e-02 -53.444 < 2e-16 ***
destination_hex1734 3.531e-02 1.597e-02 2.211 0.027002 *
destination_hex1735 -8.040e-01 2.052e-02 -39.189 < 2e-16 ***
destination_hex174 9.761e-02 2.095e-02 4.660 3.16e-06 ***
destination_hex1748 -4.244e-01 1.755e-02 -24.182 < 2e-16 ***
destination_hex1749 7.103e-01 1.576e-02 45.087 < 2e-16 ***
destination_hex175 3.350e-02 1.843e-02 1.818 0.069123 .
destination_hex1750 5.048e-01 1.583e-02 31.892 < 2e-16 ***
destination_hex1751 1.785e-01 1.643e-02 10.867 < 2e-16 ***
destination_hex1753 4.034e-01 1.589e-02 25.389 < 2e-16 ***
destination_hex1754 1.574e+00 1.548e-02 101.652 < 2e-16 ***
destination_hex1755 8.523e-01 1.565e-02 54.473 < 2e-16 ***
destination_hex1756 -2.396e-01 1.620e-02 -14.794 < 2e-16 ***
destination_hex1757 -2.169e+00 2.653e-02 -81.745 < 2e-16 ***
destination_hex176 -1.215e+00 3.085e-02 -39.385 < 2e-16 ***
destination_hex1769 7.377e-02 1.652e-02 4.467 7.95e-06 ***
destination_hex1770 -4.433e-02 1.694e-02 -2.617 0.008863 **
destination_hex1771 5.766e-01 1.601e-02 36.026 < 2e-16 ***
destination_hex1772 1.674e+00 1.668e-02 100.398 < 2e-16 ***
destination_hex1774 -2.974e-01 1.672e-02 -17.787 < 2e-16 ***
destination_hex1775 -8.812e-01 1.715e-02 -51.388 < 2e-16 ***
destination_hex1776 1.416e+00 1.549e-02 91.410 < 2e-16 ***
destination_hex1777 -2.954e-01 1.669e-02 -17.696 < 2e-16 ***
destination_hex1778 -1.061e+00 2.082e-02 -50.955 < 2e-16 ***
destination_hex1790 8.062e-01 1.601e-02 50.338 < 2e-16 ***
destination_hex1791 1.502e-01 1.629e-02 9.222 < 2e-16 ***
destination_hex1792 2.912e-01 1.674e-02 17.396 < 2e-16 ***
destination_hex1793 2.318e-01 1.624e-02 14.268 < 2e-16 ***
destination_hex1794 1.778e+00 1.685e-02 105.540 < 2e-16 ***
destination_hex1795 -2.015e+00 2.628e-02 -76.655 < 2e-16 ***
destination_hex1796 1.048e-01 1.616e-02 6.484 8.93e-11 ***
destination_hex1797 -8.561e-02 1.618e-02 -5.291 1.22e-07 ***
destination_hex1798 8.551e-02 1.608e-02 5.317 1.06e-07 ***
destination_hex1799 -1.071e+00 1.824e-02 -58.738 < 2e-16 ***
destination_hex1800 -2.149e+00 5.242e-02 -41.001 < 2e-16 ***
destination_hex1811 4.999e-02 1.695e-02 2.950 0.003181 **
destination_hex1812 1.127e+00 1.562e-02 72.155 < 2e-16 ***
destination_hex1813 1.206e+00 1.560e-02 77.317 < 2e-16 ***
destination_hex1817 -1.398e+00 1.925e-02 -72.615 < 2e-16 ***
destination_hex1818 -2.960e-01 1.638e-02 -18.075 < 2e-16 ***
destination_hex1819 1.593e+00 1.550e-02 102.795 < 2e-16 ***
destination_hex1820 -3.005e+00 4.378e-02 -68.652 < 2e-16 ***
destination_hex1832 1.240e+00 1.579e-02 78.530 < 2e-16 ***
destination_hex1833 -1.113e-01 1.671e-02 -6.665 2.65e-11 ***
destination_hex1834 -4.111e-01 1.664e-02 -24.709 < 2e-16 ***
destination_hex1835 -2.359e-01 1.694e-02 -13.925 < 2e-16 ***
destination_hex1837 -1.834e-01 2.049e-02 -8.954 < 2e-16 ***
destination_hex1839 -1.179e+00 1.905e-02 -61.918 < 2e-16 ***
destination_hex1840 1.241e+00 1.557e-02 79.754 < 2e-16 ***
destination_hex1841 -1.680e+00 2.692e-02 -62.414 < 2e-16 ***
destination_hex1842 -5.341e-01 2.093e-02 -25.513 < 2e-16 ***
destination_hex1853 1.950e-01 1.630e-02 11.958 < 2e-16 ***
destination_hex1854 5.748e-01 1.604e-02 35.848 < 2e-16 ***
destination_hex1855 6.549e-01 1.590e-02 41.194 < 2e-16 ***
destination_hex1858 6.598e-01 1.742e-02 37.866 < 2e-16 ***
destination_hex1860 -3.830e-01 2.346e-02 -16.323 < 2e-16 ***
destination_hex1861 -2.003e-01 1.646e-02 -12.167 < 2e-16 ***
destination_hex1874 7.317e-02 1.782e-02 4.106 4.03e-05 ***
destination_hex1875 -1.792e+00 2.485e-02 -72.096 < 2e-16 ***
destination_hex1876 -3.698e-01 2.642e-02 -13.998 < 2e-16 ***
destination_hex1877 3.811e-01 1.600e-02 23.818 < 2e-16 ***
destination_hex1880 -1.830e-01 2.064e-02 -8.865 < 2e-16 ***
destination_hex1882 2.529e-02 1.647e-02 1.536 0.124527
destination_hex1883 -1.270e+00 2.441e-02 -52.019 < 2e-16 ***
destination_hex1895 4.840e-01 1.619e-02 29.899 < 2e-16 ***
destination_hex1896 -3.229e-01 1.709e-02 -18.891 < 2e-16 ***
destination_hex1897 -1.195e+00 1.916e-02 -62.388 < 2e-16 ***
destination_hex1898 -1.301e+00 2.823e-02 -46.073 < 2e-16 ***
destination_hex1901 -6.706e-01 2.586e-02 -25.930 < 2e-16 ***
destination_hex1903 -1.546e+00 2.276e-02 -67.949 < 2e-16 ***
destination_hex1917 -3.682e-01 1.755e-02 -20.978 < 2e-16 ***
destination_hex1918 1.107e+00 1.643e-02 67.348 < 2e-16 ***
destination_hex1919 7.277e-01 1.591e-02 45.743 < 2e-16 ***
destination_hex1922 3.899e-01 1.831e-02 21.296 < 2e-16 ***
destination_hex1924 -2.182e+00 2.405e-02 -90.702 < 2e-16 ***
destination_hex1937 -4.594e-02 1.702e-02 -2.700 0.006942 **
destination_hex1938 7.442e-01 1.587e-02 46.886 < 2e-16 ***
destination_hex1939 -2.376e-01 1.722e-02 -13.798 < 2e-16 ***
destination_hex1942 -9.871e-01 2.507e-02 -39.367 < 2e-16 ***
destination_hex195 -5.480e-01 3.345e-02 -16.384 < 2e-16 ***
destination_hex1959 -3.181e-01 1.777e-02 -17.903 < 2e-16 ***
destination_hex196 7.533e-01 1.827e-02 41.236 < 2e-16 ***
destination_hex1960 1.947e+00 1.545e-02 126.020 < 2e-16 ***
destination_hex1961 -7.470e-01 1.820e-02 -41.033 < 2e-16 ***
destination_hex1962 -6.647e-02 1.643e-02 -4.047 5.20e-05 ***
destination_hex1964 9.388e-01 1.888e-02 49.729 < 2e-16 ***
destination_hex197 -1.691e+00 8.774e-02 -19.276 < 2e-16 ***
destination_hex1979 -6.202e-02 1.742e-02 -3.560 0.000370 ***
destination_hex1980 -1.541e-01 1.661e-02 -9.280 < 2e-16 ***
destination_hex1981 -2.495e-01 1.686e-02 -14.794 < 2e-16 ***
destination_hex1982 3.123e-01 1.680e-02 18.588 < 2e-16 ***
destination_hex1983 7.012e-03 1.642e-02 0.427 0.669385
destination_hex1984 1.642e-01 1.647e-02 9.970 < 2e-16 ***
destination_hex1985 2.635e-01 1.625e-02 16.211 < 2e-16 ***
destination_hex2001 5.083e-02 1.659e-02 3.064 0.002184 **
destination_hex2002 2.328e-01 1.603e-02 14.527 < 2e-16 ***
destination_hex2003 6.943e-01 1.584e-02 43.828 < 2e-16 ***
destination_hex2004 9.380e-01 1.580e-02 59.368 < 2e-16 ***
destination_hex2005 6.748e-02 1.648e-02 4.094 4.23e-05 ***
destination_hex2006 1.165e+00 1.589e-02 73.317 < 2e-16 ***
destination_hex2007 -2.763e+00 3.191e-02 -86.594 < 2e-16 ***
destination_hex2022 7.133e-01 1.650e-02 43.245 < 2e-16 ***
destination_hex2023 4.884e-01 1.595e-02 30.622 < 2e-16 ***
destination_hex2024 8.880e-01 1.574e-02 56.435 < 2e-16 ***
destination_hex2025 -2.511e-01 1.655e-02 -15.175 < 2e-16 ***
destination_hex2026 -9.133e-01 1.892e-02 -48.260 < 2e-16 ***
destination_hex2027 3.978e-01 1.586e-02 25.075 < 2e-16 ***
destination_hex2043 -8.531e-01 1.868e-02 -45.671 < 2e-16 ***
destination_hex2044 1.026e-02 1.643e-02 0.624 0.532401
destination_hex2045 -3.321e-01 1.935e-02 -17.158 < 2e-16 ***
destination_hex2046 9.126e-01 1.566e-02 58.284 < 2e-16 ***
destination_hex2047 -8.793e-01 1.769e-02 -49.708 < 2e-16 ***
destination_hex2048 -5.828e-01 1.734e-02 -33.610 < 2e-16 ***
destination_hex2049 -4.446e+00 3.122e-02 -142.423 < 2e-16 ***
destination_hex2064 7.229e-02 1.685e-02 4.289 1.80e-05 ***
destination_hex2065 -2.063e-01 1.706e-02 -12.095 < 2e-16 ***
destination_hex2066 -2.155e+00 3.475e-02 -62.009 < 2e-16 ***
destination_hex2067 2.181e+00 1.541e-02 141.474 < 2e-16 ***
destination_hex2068 -6.053e-01 1.966e-02 -30.788 < 2e-16 ***
destination_hex2069 -5.321e-01 1.725e-02 -30.845 < 2e-16 ***
destination_hex2085 -3.113e-01 1.712e-02 -18.187 < 2e-16 ***
destination_hex2086 1.353e+00 1.568e-02 86.286 < 2e-16 ***
destination_hex2087 1.072e+00 1.575e-02 68.042 < 2e-16 ***
destination_hex2088 -1.086e-01 1.625e-02 -6.681 2.37e-11 ***
destination_hex2089 -1.067e+00 1.769e-02 -60.338 < 2e-16 ***
destination_hex2090 1.956e+00 1.547e-02 126.481 < 2e-16 ***
destination_hex2091 -4.011e+00 6.354e-02 -63.119 < 2e-16 ***
destination_hex2105 4.140e-01 7.693e-02 5.381 7.39e-08 ***
destination_hex2106 -1.255e+00 2.145e-02 -58.477 < 2e-16 ***
destination_hex2107 1.313e+00 1.569e-02 83.672 < 2e-16 ***
destination_hex2108 9.462e-01 1.592e-02 59.449 < 2e-16 ***
destination_hex2109 -4.907e-01 1.653e-02 -29.687 < 2e-16 ***
destination_hex2110 -1.105e+00 1.928e-02 -57.322 < 2e-16 ***
destination_hex2111 -2.749e+00 3.619e-02 -75.959 < 2e-16 ***
destination_hex2128 1.893e-01 1.776e-02 10.658 < 2e-16 ***
destination_hex2129 7.024e-02 1.811e-02 3.879 0.000105 ***
destination_hex2130 -6.690e-01 1.616e-02 -41.386 < 2e-16 ***
destination_hex2131 -4.998e-01 1.686e-02 -29.644 < 2e-16 ***
destination_hex2132 -2.532e-01 1.689e-02 -14.993 < 2e-16 ***
destination_hex2148 -5.599e-01 2.075e-02 -26.986 < 2e-16 ***
destination_hex2149 -5.957e-01 1.864e-02 -31.965 < 2e-16 ***
destination_hex215 5.555e-01 3.141e-02 17.685 < 2e-16 ***
destination_hex2150 -1.232e+00 1.717e-02 -71.795 < 2e-16 ***
destination_hex2151 1.332e+00 1.556e-02 85.600 < 2e-16 ***
destination_hex2152 3.854e-01 1.608e-02 23.964 < 2e-16 ***
destination_hex2153 -1.146e+00 1.887e-02 -60.731 < 2e-16 ***
destination_hex216 -1.302e-02 2.194e-02 -0.594 0.552696
destination_hex217 3.113e-01 1.767e-02 17.613 < 2e-16 ***
destination_hex2171 7.064e-01 1.615e-02 43.731 < 2e-16 ***
destination_hex2172 -9.157e-01 1.893e-02 -48.377 < 2e-16 ***
destination_hex2173 -4.865e-01 1.692e-02 -28.753 < 2e-16 ***
destination_hex2174 7.797e-02 1.669e-02 4.671 3.00e-06 ***
destination_hex2191 1.019e+00 1.691e-02 60.253 < 2e-16 ***
destination_hex2192 -5.054e-01 1.856e-02 -27.224 < 2e-16 ***
destination_hex2193 1.165e-01 1.641e-02 7.102 1.23e-12 ***
destination_hex2194 7.654e-03 1.631e-02 0.469 0.638913
destination_hex2195 -9.137e-01 3.712e-02 -24.613 < 2e-16 ***
destination_hex2212 9.774e-01 2.020e-02 48.395 < 2e-16 ***
destination_hex2213 5.195e-01 1.725e-02 30.123 < 2e-16 ***
destination_hex2214 1.463e+00 1.671e-02 87.537 < 2e-16 ***
destination_hex2215 -4.333e-01 1.782e-02 -24.322 < 2e-16 ***
destination_hex2216 4.670e-01 1.635e-02 28.563 < 2e-16 ***
destination_hex2233 1.056e+00 1.805e-02 58.504 < 2e-16 ***
destination_hex2234 9.081e-01 1.725e-02 52.654 < 2e-16 ***
destination_hex2235 2.702e-01 1.770e-02 15.266 < 2e-16 ***
destination_hex2236 -1.292e+00 2.034e-02 -63.520 < 2e-16 ***
destination_hex2237 3.752e-01 1.906e-02 19.682 < 2e-16 ***
destination_hex2256 -8.413e-02 1.971e-02 -4.268 1.97e-05 ***
destination_hex2257 -1.955e+00 3.003e-02 -65.117 < 2e-16 ***
destination_hex2258 4.420e-02 1.694e-02 2.610 0.009057 **
destination_hex2259 1.084e+00 1.826e-02 59.371 < 2e-16 ***
destination_hex2277 -7.297e-01 2.889e-02 -25.255 < 2e-16 ***
destination_hex2278 -7.314e-01 2.182e-02 -33.521 < 2e-16 ***
destination_hex2279 2.102e-01 1.691e-02 12.424 < 2e-16 ***
destination_hex2280 -1.503e+00 3.518e-02 -42.721 < 2e-16 ***
destination_hex2297 -6.275e-01 2.210e-02 -28.388 < 2e-16 ***
destination_hex23 -3.820e-02 4.843e-02 -0.789 0.430225
destination_hex2300 -8.074e-01 2.495e-02 -32.367 < 2e-16 ***
destination_hex2301 -2.781e-01 1.812e-02 -15.345 < 2e-16 ***
destination_hex2318 1.338e+00 1.623e-02 82.474 < 2e-16 ***
destination_hex2319 1.460e+00 1.607e-02 90.857 < 2e-16 ***
destination_hex2322 -2.460e-02 1.789e-02 -1.375 0.169027
destination_hex2337 1.306e+00 2.178e-02 59.952 < 2e-16 ***
destination_hex2341 1.705e+00 1.602e-02 106.419 < 2e-16 ***
destination_hex2343 -7.603e-01 1.982e-02 -38.368 < 2e-16 ***
destination_hex2361 3.600e-01 1.755e-02 20.510 < 2e-16 ***
destination_hex2364 -1.738e+00 3.327e-02 -52.226 < 2e-16 ***
destination_hex237 -6.276e-01 3.230e-02 -19.431 < 2e-16 ***
destination_hex2379 4.909e-01 2.931e-02 16.750 < 2e-16 ***
destination_hex238 -8.453e-02 2.117e-02 -3.993 6.53e-05 ***
destination_hex2384 1.205e+00 1.661e-02 72.517 < 2e-16 ***
destination_hex239 -2.484e-02 3.329e-02 -0.746 0.455519
destination_hex2405 1.833e+00 1.597e-02 114.767 < 2e-16 ***
destination_hex2406 -1.319e+00 2.837e-02 -46.486 < 2e-16 ***
destination_hex2426 1.260e+00 1.881e-02 67.000 < 2e-16 ***
destination_hex2427 1.340e+00 1.664e-02 80.547 < 2e-16 ***
destination_hex2505 1.666e+00 2.371e-02 70.273 < 2e-16 ***
destination_hex257 6.137e-01 2.124e-02 28.893 < 2e-16 ***
destination_hex258 -7.369e-01 2.460e-02 -29.951 < 2e-16 ***
destination_hex259 4.969e-01 1.940e-02 25.609 < 2e-16 ***
destination_hex278 8.558e-01 2.158e-02 39.653 < 2e-16 ***
destination_hex279 3.179e-03 1.976e-02 0.161 0.872198
destination_hex280 5.013e-01 1.942e-02 25.814 < 2e-16 ***
destination_hex298 -3.496e+00 1.333e-01 -26.215 < 2e-16 ***
destination_hex299 2.286e-01 2.222e-02 10.291 < 2e-16 ***
destination_hex300 -3.251e-01 2.266e-02 -14.346 < 2e-16 ***
destination_hex320 8.400e-01 2.012e-02 41.743 < 2e-16 ***
destination_hex321 -4.596e-01 2.743e-02 -16.755 < 2e-16 ***
destination_hex322 1.311e+00 1.910e-02 68.648 < 2e-16 ***
destination_hex340 2.011e+00 1.871e-02 107.503 < 2e-16 ***
destination_hex341 6.567e-01 1.925e-02 34.115 < 2e-16 ***
destination_hex342 1.282e+00 1.826e-02 70.244 < 2e-16 ***
destination_hex363 6.773e-01 2.022e-02 33.490 < 2e-16 ***
destination_hex364 2.047e+00 1.699e-02 120.496 < 2e-16 ***
destination_hex383 1.064e+00 1.758e-02 60.534 < 2e-16 ***
destination_hex384 -1.262e-01 1.729e-02 -7.301 2.86e-13 ***
destination_hex385 1.109e+00 2.128e-02 52.121 < 2e-16 ***
destination_hex404 1.644e+00 2.123e-02 77.438 < 2e-16 ***
destination_hex405 1.191e+00 1.831e-02 65.055 < 2e-16 ***
destination_hex406 6.367e-01 1.607e-02 39.624 < 2e-16 ***
destination_hex407 1.057e+00 1.741e-02 60.709 < 2e-16 ***
destination_hex408 2.193e+00 1.591e-02 137.862 < 2e-16 ***
destination_hex425 -2.709e-01 2.815e-02 -9.624 < 2e-16 ***
destination_hex426 4.248e-01 1.837e-02 23.128 < 2e-16 ***
destination_hex427 -1.658e+00 2.770e-02 -59.863 < 2e-16 ***
destination_hex428 1.066e-01 1.844e-02 5.784 7.30e-09 ***
destination_hex429 -1.362e-01 2.733e-02 -4.981 6.31e-07 ***
destination_hex44 1.817e+00 2.604e-02 69.793 < 2e-16 ***
destination_hex446 8.015e-02 2.680e-02 2.991 0.002782 **
destination_hex447 -1.848e-01 2.296e-02 -8.048 8.41e-16 ***
destination_hex448 1.605e-01 1.909e-02 8.407 < 2e-16 ***
destination_hex449 -6.254e-01 1.706e-02 -36.667 < 2e-16 ***
destination_hex450 -2.372e-01 1.932e-02 -12.281 < 2e-16 ***
destination_hex46 1.588e+00 2.503e-02 63.431 < 2e-16 ***
destination_hex468 6.975e-01 1.829e-02 38.144 < 2e-16 ***
destination_hex469 -4.930e-01 1.747e-02 -28.227 < 2e-16 ***
destination_hex470 2.081e-02 1.669e-02 1.247 0.212533
destination_hex471 -6.293e-02 2.167e-02 -2.904 0.003689 **
destination_hex488 -2.294e-01 2.698e-02 -8.503 < 2e-16 ***
destination_hex489 -1.919e+00 4.962e-02 -38.680 < 2e-16 ***
destination_hex490 3.976e-01 1.741e-02 22.830 < 2e-16 ***
destination_hex491 -1.757e+00 2.127e-02 -82.625 < 2e-16 ***
destination_hex493 -2.313e+00 5.166e-02 -44.773 < 2e-16 ***
destination_hex494 -5.726e-01 2.660e-02 -21.529 < 2e-16 ***
destination_hex509 -2.707e-01 2.109e-02 -12.836 < 2e-16 ***
destination_hex510 5.864e-01 1.810e-02 32.394 < 2e-16 ***
destination_hex511 -7.972e-02 1.660e-02 -4.803 1.57e-06 ***
destination_hex512 -1.719e-01 1.644e-02 -10.456 < 2e-16 ***
destination_hex513 1.206e+00 1.689e-02 71.419 < 2e-16 ***
destination_hex514 5.568e-01 1.922e-02 28.965 < 2e-16 ***
destination_hex515 -4.793e-01 3.279e-02 -14.618 < 2e-16 ***
destination_hex530 -9.459e-01 3.328e-02 -28.427 < 2e-16 ***
destination_hex531 1.688e+00 1.633e-02 103.355 < 2e-16 ***
destination_hex532 3.940e-01 1.760e-02 22.388 < 2e-16 ***
destination_hex533 1.502e+00 1.557e-02 96.428 < 2e-16 ***
destination_hex534 4.253e-01 1.651e-02 25.759 < 2e-16 ***
destination_hex536 -4.274e-01 2.328e-02 -18.358 < 2e-16 ***
destination_hex537 -7.822e-01 3.681e-02 -21.247 < 2e-16 ***
destination_hex538 -1.507e+00 4.506e-02 -33.444 < 2e-16 ***
destination_hex539 -4.597e+00 5.776e-01 -7.959 1.73e-15 ***
destination_hex551 1.471e-02 2.336e-02 0.630 0.528891
destination_hex552 1.652e+00 1.847e-02 89.404 < 2e-16 ***
destination_hex553 -6.155e-04 1.745e-02 -0.035 0.971868
destination_hex554 -3.117e-01 1.671e-02 -18.651 < 2e-16 ***
destination_hex555 6.626e-01 1.698e-02 39.021 < 2e-16 ***
destination_hex559 -1.769e+00 5.644e-02 -31.341 < 2e-16 ***
destination_hex560 4.471e-01 2.221e-02 20.128 < 2e-16 ***
destination_hex561 -1.484e+00 6.899e-02 -21.504 < 2e-16 ***
destination_hex572 -4.448e-01 3.580e-02 -12.425 < 2e-16 ***
destination_hex573 1.175e+00 1.824e-02 64.409 < 2e-16 ***
destination_hex574 -8.264e-01 2.227e-02 -37.105 < 2e-16 ***
destination_hex575 2.278e+00 1.543e-02 147.663 < 2e-16 ***
destination_hex576 2.336e-01 1.652e-02 14.142 < 2e-16 ***
destination_hex578 -3.272e+00 1.077e-01 -30.383 < 2e-16 ***
destination_hex582 -2.027e+00 6.756e-02 -30.006 < 2e-16 ***
destination_hex583 -3.529e+00 2.188e-01 -16.133 < 2e-16 ***
destination_hex584 -5.716e-01 3.803e-02 -15.031 < 2e-16 ***
destination_hex593 -1.035e+00 2.818e-02 -36.726 < 2e-16 ***
destination_hex594 3.857e-01 2.019e-02 19.102 < 2e-16 ***
destination_hex595 9.470e-01 1.632e-02 58.020 < 2e-16 ***
destination_hex596 2.690e-01 1.611e-02 16.700 < 2e-16 ***
destination_hex597 -3.374e-01 2.164e-02 -15.591 < 2e-16 ***
destination_hex603 -1.804e+00 5.329e-02 -33.859 < 2e-16 ***
destination_hex604 -5.491e-01 4.699e-02 -11.686 < 2e-16 ***
destination_hex615 -5.676e-01 2.106e-02 -26.948 < 2e-16 ***
destination_hex616 7.282e-01 1.740e-02 41.842 < 2e-16 ***
destination_hex617 -5.010e-01 1.778e-02 -28.187 < 2e-16 ***
destination_hex618 -4.302e-02 1.646e-02 -2.613 0.008962 **
destination_hex620 4.534e-01 1.874e-02 24.186 < 2e-16 ***
destination_hex637 -1.368e-01 1.863e-02 -7.342 2.10e-13 ***
destination_hex638 1.366e-01 1.629e-02 8.385 < 2e-16 ***
destination_hex657 9.282e-01 1.672e-02 55.509 < 2e-16 ***
destination_hex658 3.670e-01 1.636e-02 22.426 < 2e-16 ***
destination_hex659 2.988e-01 1.627e-02 18.363 < 2e-16 ***
destination_hex66 1.101e-01 4.607e-02 2.391 0.016819 *
destination_hex660 9.564e-01 1.578e-02 60.605 < 2e-16 ***
destination_hex662 4.002e-01 1.884e-02 21.243 < 2e-16 ***
destination_hex67 1.069e+00 2.006e-02 53.285 < 2e-16 ***
destination_hex677 7.934e-01 1.779e-02 44.611 < 2e-16 ***
destination_hex678 -6.176e-01 2.054e-02 -30.073 < 2e-16 ***
destination_hex679 7.483e-01 1.604e-02 46.660 < 2e-16 ***
destination_hex68 1.054e+00 2.440e-02 43.180 < 2e-16 ***
destination_hex680 2.333e+00 1.546e-02 150.845 < 2e-16 ***
destination_hex681 -9.840e-01 2.348e-02 -41.910 < 2e-16 ***
destination_hex699 4.520e-01 1.755e-02 25.751 < 2e-16 ***
destination_hex700 2.749e-01 1.666e-02 16.507 < 2e-16 ***
destination_hex701 -1.989e+00 2.440e-02 -81.507 < 2e-16 ***
destination_hex702 6.351e-01 1.598e-02 39.743 < 2e-16 ***
destination_hex704 5.536e-01 1.829e-02 30.263 < 2e-16 ***
destination_hex722 -2.452e-01 1.803e-02 -13.597 < 2e-16 ***
destination_hex725 -1.676e+00 3.082e-02 -54.401 < 2e-16 ***
destination_hex741 1.081e+00 1.676e-02 64.531 < 2e-16 ***
destination_hex743 -2.466e+00 2.587e-02 -95.353 < 2e-16 ***
destination_hex744 6.056e-01 1.602e-02 37.813 < 2e-16 ***
destination_hex761 1.171e+00 1.725e-02 67.873 < 2e-16 ***
destination_hex762 -5.456e-01 1.976e-02 -27.611 < 2e-16 ***
destination_hex763 -2.540e+00 2.543e-02 -99.909 < 2e-16 ***
destination_hex764 1.131e+00 1.566e-02 72.216 < 2e-16 ***
destination_hex765 -1.347e-01 1.779e-02 -7.574 3.63e-14 ***
destination_hex767 1.480e-01 1.667e-02 8.879 < 2e-16 ***
destination_hex772 -8.686e-01 3.774e-02 -23.014 < 2e-16 ***
destination_hex784 -1.829e+00 2.500e-02 -73.169 < 2e-16 ***
destination_hex785 9.774e-02 1.622e-02 6.025 1.70e-09 ***
destination_hex786 1.975e-01 1.604e-02 12.309 < 2e-16 ***
destination_hex787 -1.570e-01 1.793e-02 -8.757 < 2e-16 ***
destination_hex788 -1.481e+00 2.063e-02 -71.790 < 2e-16 ***
destination_hex789 -1.811e+00 2.263e-02 -80.023 < 2e-16 ***
destination_hex803 -4.488e-02 2.046e-02 -2.193 0.028311 *
destination_hex804 2.646e-01 1.662e-02 15.917 < 2e-16 ***
destination_hex805 1.627e+00 1.554e-02 104.731 < 2e-16 ***
destination_hex806 -2.909e-01 1.633e-02 -17.817 < 2e-16 ***
destination_hex807 -2.197e-01 1.674e-02 -13.120 < 2e-16 ***
destination_hex808 -1.729e+00 2.488e-02 -69.502 < 2e-16 ***
destination_hex809 2.135e-01 1.616e-02 13.211 < 2e-16 ***
destination_hex810 -1.845e-01 1.747e-02 -10.566 < 2e-16 ***
destination_hex814 -1.421e-01 2.456e-02 -5.787 7.15e-09 ***
destination_hex819 4.745e+00 2.020e-02 234.855 < 2e-16 ***
destination_hex824 9.860e-02 2.023e-02 4.874 1.10e-06 ***
destination_hex826 -3.733e-02 1.640e-02 -2.276 0.022867 *
destination_hex827 -4.299e-01 1.647e-02 -26.105 < 2e-16 ***
destination_hex828 1.541e-01 1.600e-02 9.627 < 2e-16 ***
destination_hex829 -2.869e-01 1.729e-02 -16.589 < 2e-16 ***
destination_hex830 -1.170e+00 1.982e-02 -59.051 < 2e-16 ***
destination_hex831 1.982e+00 1.548e-02 128.096 < 2e-16 ***
destination_hex832 1.682e+00 1.563e-02 107.613 < 2e-16 ***
destination_hex835 -9.312e-01 2.455e-02 -37.927 < 2e-16 ***
destination_hex844 -4.655e-01 2.343e-02 -19.867 < 2e-16 ***
destination_hex846 -1.201e-01 1.674e-02 -7.177 7.14e-13 ***
destination_hex847 7.947e-01 1.589e-02 50.012 < 2e-16 ***
destination_hex848 -1.131e-01 1.648e-02 -6.862 6.77e-12 ***
destination_hex849 -7.689e-01 1.730e-02 -44.435 < 2e-16 ***
destination_hex850 1.313e-01 1.628e-02 8.064 7.36e-16 ***
destination_hex851 -1.292e-01 1.643e-02 -7.863 3.76e-15 ***
destination_hex852 -2.684e-01 1.736e-02 -15.458 < 2e-16 ***
destination_hex853 -1.016e-01 1.719e-02 -5.913 3.36e-09 ***
destination_hex854 6.001e-03 2.073e-02 0.289 0.772238
destination_hex855 -4.967e-01 2.473e-02 -20.082 < 2e-16 ***
destination_hex856 -1.984e+00 3.477e-02 -57.046 < 2e-16 ***
destination_hex86 -4.823e-01 3.769e-02 -12.796 < 2e-16 ***
destination_hex866 5.437e-01 1.819e-02 29.893 < 2e-16 ***
destination_hex867 1.388e+00 1.591e-02 87.274 < 2e-16 ***
destination_hex868 9.386e-01 1.613e-02 58.180 < 2e-16 ***
destination_hex869 1.878e+00 1.603e-02 117.103 < 2e-16 ***
destination_hex87 -1.582e+00 8.838e-02 -17.904 < 2e-16 ***
destination_hex870 1.465e+00 1.553e-02 94.307 < 2e-16 ***
destination_hex871 1.496e+00 1.572e-02 95.193 < 2e-16 ***
destination_hex872 3.545e-01 1.622e-02 21.853 < 2e-16 ***
destination_hex873 7.274e-02 1.715e-02 4.240 2.23e-05 ***
destination_hex874 -1.952e+00 2.015e-02 -96.877 < 2e-16 ***
destination_hex875 -1.359e+00 3.203e-02 -42.438 < 2e-16 ***
destination_hex876 -6.463e-01 2.440e-02 -26.486 < 2e-16 ***
destination_hex877 1.916e-01 2.073e-02 9.242 < 2e-16 ***
destination_hex88 1.742e-01 2.262e-02 7.700 1.36e-14 ***
destination_hex887 1.036e-02 1.732e-02 0.598 0.549518
destination_hex888 -1.131e+00 2.037e-02 -55.545 < 2e-16 ***
destination_hex889 -3.511e-01 1.986e-02 -17.679 < 2e-16 ***
destination_hex89 6.195e-01 2.624e-02 23.606 < 2e-16 ***
destination_hex890 5.546e-01 1.599e-02 34.677 < 2e-16 ***
destination_hex891 -1.392e+00 2.084e-02 -66.804 < 2e-16 ***
destination_hex893 7.275e-01 1.588e-02 45.796 < 2e-16 ***
destination_hex894 -1.080e+00 1.917e-02 -56.329 < 2e-16 ***
destination_hex895 9.077e-02 1.786e-02 5.081 3.76e-07 ***
destination_hex896 -1.739e+00 3.362e-02 -51.718 < 2e-16 ***
destination_hex897 -1.812e+00 3.115e-02 -58.163 < 2e-16 ***
destination_hex898 -5.066e-02 2.075e-02 -2.441 0.014654 *
destination_hex90 -3.057e+00 5.002e-01 -6.112 9.85e-10 ***
destination_hex908 5.270e-01 1.843e-02 28.596 < 2e-16 ***
destination_hex909 -1.396e-01 1.654e-02 -8.441 < 2e-16 ***
destination_hex910 -9.137e-01 1.928e-02 -47.388 < 2e-16 ***
destination_hex911 1.284e+00 1.575e-02 81.514 < 2e-16 ***
destination_hex912 -5.367e-01 1.682e-02 -31.898 < 2e-16 ***
destination_hex915 1.452e-01 1.636e-02 8.874 < 2e-16 ***
destination_hex917 1.164e+00 1.624e-02 71.666 < 2e-16 ***
destination_hex918 -2.278e+00 4.269e-02 -53.352 < 2e-16 ***
destination_hex919 -6.788e-01 2.105e-02 -32.243 < 2e-16 ***
destination_hex928 -1.134e+00 2.282e-02 -49.710 < 2e-16 ***
destination_hex929 -2.098e-01 1.673e-02 -12.545 < 2e-16 ***
destination_hex930 5.198e-01 1.571e-02 33.092 < 2e-16 ***
destination_hex931 -3.135e-01 1.832e-02 -17.118 < 2e-16 ***
destination_hex932 -2.367e+00 2.870e-02 -82.469 < 2e-16 ***
destination_hex933 2.160e-01 1.698e-02 12.722 < 2e-16 ***
destination_hex934 -2.550e-01 1.727e-02 -14.765 < 2e-16 ***
destination_hex935 2.003e+00 1.546e-02 129.519 < 2e-16 ***
destination_hex938 -3.984e+00 1.748e-01 -22.798 < 2e-16 ***
destination_hex939 2.150e+00 1.564e-02 137.431 < 2e-16 ***
destination_hex940 -8.528e-01 2.396e-02 -35.587 < 2e-16 ***
destination_hex949 -1.052e+00 2.097e-02 -50.167 < 2e-16 ***
destination_hex950 7.346e-01 1.602e-02 45.847 < 2e-16 ***
destination_hex951 1.558e+00 1.550e-02 100.544 < 2e-16 ***
destination_hex952 8.330e-01 1.707e-02 48.804 < 2e-16 ***
destination_hex953 2.038e-01 1.747e-02 11.662 < 2e-16 ***
destination_hex954 -1.826e+00 2.288e-02 -79.815 < 2e-16 ***
destination_hex955 1.041e+00 1.586e-02 65.634 < 2e-16 ***
destination_hex956 -4.923e-01 1.776e-02 -27.711 < 2e-16 ***
destination_hex957 8.755e-02 1.743e-02 5.023 5.10e-07 ***
destination_hex959 -1.791e-02 2.670e-02 -0.671 0.502322
destination_hex961 -1.389e-01 1.934e-02 -7.184 6.79e-13 ***
destination_hex962 1.953e+00 1.597e-02 122.271 < 2e-16 ***
destination_hex970 3.794e-01 1.643e-02 23.084 < 2e-16 ***
destination_hex971 5.063e-01 1.591e-02 31.823 < 2e-16 ***
destination_hex972 -4.922e-01 1.676e-02 -29.370 < 2e-16 ***
destination_hex974 -6.685e-01 1.845e-02 -36.232 < 2e-16 ***
destination_hex975 -1.462e+00 2.211e-02 -66.120 < 2e-16 ***
destination_hex976 -7.820e-01 1.887e-02 -41.437 < 2e-16 ***
destination_hex977 8.570e-03 1.653e-02 0.519 0.604079
destination_hex978 -2.313e+00 1.867e-02 -123.914 < 2e-16 ***
destination_hex982 -4.716e-01 1.864e-02 -25.306 < 2e-16 ***
destination_hex983 6.523e+00 1.568e-02 415.948 < 2e-16 ***
destination_hex984 4.312e+00 1.576e-02 273.511 < 2e-16 ***
destination_hex991 3.163e-01 1.666e-02 18.985 < 2e-16 ***
destination_hex992 5.691e-01 1.616e-02 35.205 < 2e-16 ***
destination_hex993 -8.934e-01 1.797e-02 -49.718 < 2e-16 ***
destination_hex994 -9.205e-01 1.890e-02 -48.707 < 2e-16 ***
destination_hex995 -1.523e-01 1.715e-02 -8.877 < 2e-16 ***
destination_hex996 -7.979e-01 1.865e-02 -42.782 < 2e-16 ***
destination_hex997 1.192e-02 2.005e-02 0.595 0.552145
destination_hex998 3.023e-01 1.631e-02 18.529 < 2e-16 ***
destination_hex999 -1.806e+00 1.809e-02 -99.849 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 36749407 on 64061 degrees of freedom
AIC: 37107754
Number of Fisher Scoring iterations: 8
Code
CalcRSquared(decSIM$data$trips, decSIM$fitted.values)
[1] 0.3667168
Key Coefficients: The Poisson regression model provides estimates of the coefficients, shedding light on the relationship between predictor variables and the logarithm of trip counts. Significant p-values (< 2e-16) highlight the importance of each predictor in influencing trip counts.
- Intercept: 13.90 (p < 2e-16)
- log(push_num_bus_stops): 0.320 (p < 2e-16)
- log(push_station_count): -0.548 (p < 2e-16)
- log(push_trainexit_count): 0.455 (p < 2e-16)
- log(push_hdb_sf_count): 0.398 (p < 2e-16)
- log(push_est_pop): -0.019 (p < 2e-16)
- log(distance): -1.260 (p < 2e-16)
- destination_hex1003: 1.793 (p < 2e-16)
- destination_hex1004: 0.856 (p < 2e-16)
- destination_hex1011: -0.046 (p = 0.0165)
- destination_hex1012: 1.545 (p < 2e-16)
- destination_hex1013: 0.134 (p = 3.71e-15)
- destination_hex1014: -1.525 (p < 2e-16)
- destination_hex1015: 1.265 (p < 2e-16)
- destination_hex1016: 1.288 (p < 2e-16)
- destination_hex1018: -0.200 (p < 2e-16)
- destination_hex1019: 0.308 (p < 2e-16)
- destination_hex1023: -0.778 (p < 2e-16)
- destination_hex1024: 0.413 (p < 2e-16)
- destination_hex1025: -3.483 (p < 2e-16)
- destination_hex1033: 0.481 (p < 2e-16)
- and various other dummy destination variables in which many are statistically significant.
Model Fit: The R-squared value for the model is approximately 0.367, indicating that around 36.7% of the variability in trip counts can be explained by the selected predictor variables. The model’s goodness-of-fit metrics, including the residual deviance and AIC, support its efficacy in capturing patterns within the dataset. Each predictor’s p-value underscores its significance in explaining the observed variation in trip counts.
Doubly Constrained
Code
<- glm(formula = trips ~
docSIM +
origin_hex +
destination_hex log(distance),
family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(docSIM)
Call:
glm(formula = trips ~ origin_hex + destination_hex + log(distance),
family = poisson(link = "log"), data = final_df, na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 14.3430520 0.0291417 492.182 < 2e-16 ***
origin_hex1003 2.5903322 0.0250027 103.602 < 2e-16 ***
origin_hex1004 3.4121753 0.0248683 137.210 < 2e-16 ***
origin_hex1011 -1.0631114 0.0389378 -27.303 < 2e-16 ***
origin_hex1012 -0.9093517 0.0402367 -22.600 < 2e-16 ***
origin_hex1013 -0.2681447 0.0292831 -9.157 < 2e-16 ***
origin_hex1014 0.3571280 0.0268315 13.310 < 2e-16 ***
origin_hex1015 -0.4350234 0.0293031 -14.846 < 2e-16 ***
origin_hex1016 1.3449090 0.0256486 52.436 < 2e-16 ***
origin_hex1018 1.9062046 0.0266824 71.441 < 2e-16 ***
origin_hex1019 3.3716162 0.0250505 134.593 < 2e-16 ***
origin_hex1023 1.5582844 0.0263390 59.163 < 2e-16 ***
origin_hex1024 2.7831993 0.0250544 111.086 < 2e-16 ***
origin_hex1025 -1.9083997 0.0549907 -34.704 < 2e-16 ***
origin_hex1033 0.2592686 0.0270916 9.570 < 2e-16 ***
origin_hex1034 1.2878808 0.0256506 50.209 < 2e-16 ***
origin_hex1035 1.8765649 0.0252289 74.382 < 2e-16 ***
origin_hex1036 -0.1776623 0.0282643 -6.286 3.26e-10 ***
origin_hex1037 1.1158226 0.0255936 43.598 < 2e-16 ***
origin_hex1043 -0.0300218 0.0348369 -0.862 0.388808
origin_hex1045 2.1788516 0.0250463 86.993 < 2e-16 ***
origin_hex1046 2.4951748 0.0251481 99.219 < 2e-16 ***
origin_hex1053 1.6284491 0.0253318 64.285 < 2e-16 ***
origin_hex1054 0.8661803 0.0258339 33.529 < 2e-16 ***
origin_hex1055 1.8106460 0.0251866 71.889 < 2e-16 ***
origin_hex1056 0.7442746 0.0262855 28.315 < 2e-16 ***
origin_hex1064 -2.9534132 0.2512310 -11.756 < 2e-16 ***
origin_hex1066 2.2264538 0.0251525 88.518 < 2e-16 ***
origin_hex1067 2.2719081 0.0255327 88.980 < 2e-16 ***
origin_hex1074 1.0124600 0.0257866 39.263 < 2e-16 ***
origin_hex1075 0.4195257 0.0266182 15.761 < 2e-16 ***
origin_hex1076 0.4962346 0.0261086 19.007 < 2e-16 ***
origin_hex1077 0.7393112 0.0266156 27.777 < 2e-16 ***
origin_hex1079 1.8970026 0.0251525 75.420 < 2e-16 ***
origin_hex1085 -3.6911898 0.1435210 -25.719 < 2e-16 ***
origin_hex1087 1.7396384 0.0253359 68.663 < 2e-16 ***
origin_hex1088 0.6057076 0.0273269 22.165 < 2e-16 ***
origin_hex109 -1.8749565 0.1026963 -18.257 < 2e-16 ***
origin_hex1094 -1.2556216 0.0501123 -25.056 < 2e-16 ***
origin_hex1095 -1.4848496 0.0411105 -36.118 < 2e-16 ***
origin_hex1096 0.7535192 0.0321237 23.457 < 2e-16 ***
origin_hex1097 2.3105995 0.0249429 92.635 < 2e-16 ***
origin_hex1098 -0.0103852 0.0305031 -0.340 0.733507
origin_hex1099 1.2438856 0.0255498 48.685 < 2e-16 ***
origin_hex110 -1.3774252 0.0764818 -18.010 < 2e-16 ***
origin_hex1105 -1.0155910 0.0659078 -15.409 < 2e-16 ***
origin_hex1106 -2.7238970 0.0949197 -28.697 < 2e-16 ***
origin_hex1107 -0.8414605 0.0368788 -22.817 < 2e-16 ***
origin_hex1108 3.9323157 0.0247914 158.616 < 2e-16 ***
origin_hex1109 1.0371411 0.0267176 38.819 < 2e-16 ***
origin_hex111 1.7482750 0.0285230 61.293 < 2e-16 ***
origin_hex1116 0.9125158 0.0260677 35.006 < 2e-16 ***
origin_hex1117 -0.6400039 0.0302084 -21.186 < 2e-16 ***
origin_hex1118 -0.5765555 0.0311796 -18.491 < 2e-16 ***
origin_hex1119 0.6842023 0.0264703 25.848 < 2e-16 ***
origin_hex112 -2.6052716 0.0691053 -37.700 < 2e-16 ***
origin_hex1120 0.5676771 0.0278991 20.348 < 2e-16 ***
origin_hex1129 1.9758544 0.0251287 78.629 < 2e-16 ***
origin_hex1130 2.4369687 0.0249925 97.508 < 2e-16 ***
origin_hex1131 0.9668029 0.0267147 36.190 < 2e-16 ***
origin_hex1136 -0.4742722 0.0289742 -16.369 < 2e-16 ***
origin_hex1138 -1.0970718 0.0378298 -29.000 < 2e-16 ***
origin_hex1139 1.3482846 0.0252012 53.501 < 2e-16 ***
origin_hex1141 1.4379921 0.0254250 56.558 < 2e-16 ***
origin_hex1148 -1.2060430 0.0571182 -21.115 < 2e-16 ***
origin_hex1149 0.2361057 0.0300643 7.853 4.05e-15 ***
origin_hex1150 2.7846279 0.0249352 111.675 < 2e-16 ***
origin_hex1151 0.7362468 0.0255392 28.828 < 2e-16 ***
origin_hex1158 -0.3968568 0.0270501 -14.671 < 2e-16 ***
origin_hex1159 1.2628707 0.0253060 49.904 < 2e-16 ***
origin_hex1160 2.3290710 0.0249504 93.348 < 2e-16 ***
origin_hex1171 3.1851005 0.0249958 127.426 < 2e-16 ***
origin_hex1172 3.0491950 0.0249922 122.006 < 2e-16 ***
origin_hex1173 0.0559008 0.0276637 2.021 0.043308 *
origin_hex1174 -3.2792088 0.2684651 -12.215 < 2e-16 ***
origin_hex1178 -0.0174636 0.0267319 -0.653 0.513571
origin_hex1179 0.8191122 0.0255933 32.005 < 2e-16 ***
origin_hex1180 1.8611961 0.0250428 74.321 < 2e-16 ***
origin_hex1181 1.1944927 0.0255105 46.824 < 2e-16 ***
origin_hex1183 0.3118311 0.0272599 11.439 < 2e-16 ***
origin_hex1190 -0.6994399 0.0537874 -13.004 < 2e-16 ***
origin_hex1192 2.0980558 0.0254522 82.431 < 2e-16 ***
origin_hex1193 1.9974185 0.0252239 79.187 < 2e-16 ***
origin_hex1194 0.0987029 0.0283260 3.485 0.000493 ***
origin_hex1200 0.8826503 0.0255725 34.516 < 2e-16 ***
origin_hex1201 0.7807828 0.0256612 30.427 < 2e-16 ***
origin_hex1203 1.6163213 0.0253599 63.735 < 2e-16 ***
origin_hex1204 1.2349564 0.0255866 48.266 < 2e-16 ***
origin_hex1211 -1.2695417 0.0924841 -13.727 < 2e-16 ***
origin_hex1214 2.7376752 0.0250338 109.359 < 2e-16 ***
origin_hex1215 -0.8350641 0.0467435 -17.865 < 2e-16 ***
origin_hex1216 -1.5932564 0.0473398 -33.656 < 2e-16 ***
origin_hex1220 2.0629601 0.0250126 82.477 < 2e-16 ***
origin_hex1221 1.4896282 0.0250907 59.370 < 2e-16 ***
origin_hex1222 1.2674748 0.0265280 47.779 < 2e-16 ***
origin_hex1223 -0.4107184 0.0297633 -13.800 < 2e-16 ***
origin_hex1224 0.4174536 0.0268419 15.552 < 2e-16 ***
origin_hex1231 -3.4578881 0.1905817 -18.144 < 2e-16 ***
origin_hex1232 -1.7274527 0.1144803 -15.090 < 2e-16 ***
origin_hex1235 0.2406004 0.0282482 8.517 < 2e-16 ***
origin_hex1236 0.1565051 0.0282595 5.538 3.06e-08 ***
origin_hex1241 0.1614794 0.0266177 6.067 1.31e-09 ***
origin_hex1242 0.6614770 0.0255971 25.842 < 2e-16 ***
origin_hex1243 1.4665244 0.0251524 58.306 < 2e-16 ***
origin_hex1246 0.4731864 0.0263069 17.987 < 2e-16 ***
origin_hex1256 1.6729618 0.0259482 64.473 < 2e-16 ***
origin_hex1257 2.5964352 0.0252632 102.775 < 2e-16 ***
origin_hex1258 0.2954063 0.0286189 10.322 < 2e-16 ***
origin_hex1262 0.6916878 0.0260014 26.602 < 2e-16 ***
origin_hex1263 1.0363958 0.0252272 41.083 < 2e-16 ***
origin_hex1264 0.3436661 0.0273355 12.572 < 2e-16 ***
origin_hex1265 -0.1688271 0.0283523 -5.955 2.61e-09 ***
origin_hex1266 1.1886330 0.0258505 45.981 < 2e-16 ***
origin_hex1267 -0.8241729 0.0364288 -22.624 < 2e-16 ***
origin_hex1272 -3.0243630 0.1180921 -25.610 < 2e-16 ***
origin_hex1273 0.9380934 0.0273402 34.312 < 2e-16 ***
origin_hex1277 2.5447438 0.0250284 101.674 < 2e-16 ***
origin_hex1278 -0.0548415 0.0282598 -1.941 0.052304 .
origin_hex128 0.4983129 0.0402788 12.372 < 2e-16 ***
origin_hex1283 2.3719219 0.0249639 95.014 < 2e-16 ***
origin_hex1284 1.4849357 0.0251401 59.066 < 2e-16 ***
origin_hex1285 2.1536213 0.0249155 86.437 < 2e-16 ***
origin_hex1286 0.4718853 0.0266565 17.702 < 2e-16 ***
origin_hex1289 -1.3661089 0.0523371 -26.102 < 2e-16 ***
origin_hex129 -2.1870574 0.1912998 -11.433 < 2e-16 ***
origin_hex1293 -3.0362270 0.0924779 -32.832 < 2e-16 ***
origin_hex1294 2.4407838 0.0253287 96.364 < 2e-16 ***
origin_hex1295 -0.0413929 0.0321284 -1.288 0.197620
origin_hex1298 1.6076405 0.0255251 62.983 < 2e-16 ***
origin_hex1299 1.9507024 0.0254509 76.646 < 2e-16 ***
origin_hex130 -2.2665276 0.0660662 -34.307 < 2e-16 ***
origin_hex1304 2.2216511 0.0249831 88.926 < 2e-16 ***
origin_hex1305 1.4955437 0.0250307 59.748 < 2e-16 ***
origin_hex1307 -1.7027141 0.0449582 -37.873 < 2e-16 ***
origin_hex1308 1.2818625 0.0254231 50.421 < 2e-16 ***
origin_hex131 -1.5232337 0.0437542 -34.813 < 2e-16 ***
origin_hex1310 -2.6105754 0.1371167 -19.039 < 2e-16 ***
origin_hex1316 -1.0606751 0.0412950 -25.685 < 2e-16 ***
origin_hex1317 0.4562378 0.0270864 16.844 < 2e-16 ***
origin_hex1318 0.0069986 0.0290307 0.241 0.809496
origin_hex1319 2.7426097 0.0249942 109.730 < 2e-16 ***
origin_hex132 -1.9791281 0.0546229 -36.233 < 2e-16 ***
origin_hex1320 1.4778627 0.0262307 56.341 < 2e-16 ***
origin_hex1325 -0.2112466 0.0275514 -7.667 1.76e-14 ***
origin_hex1326 1.6965323 0.0250218 67.802 < 2e-16 ***
origin_hex1327 1.5666456 0.0250899 62.441 < 2e-16 ***
origin_hex1328 0.3551687 0.0263957 13.456 < 2e-16 ***
origin_hex1329 0.5467980 0.0272457 20.069 < 2e-16 ***
origin_hex133 -1.3865798 0.0454571 -30.503 < 2e-16 ***
origin_hex1330 0.2395731 0.0261921 9.147 < 2e-16 ***
origin_hex1331 -3.3408762 0.3025464 -11.043 < 2e-16 ***
origin_hex1333 0.3418904 0.0276452 12.367 < 2e-16 ***
origin_hex1334 0.6357777 0.0273107 23.279 < 2e-16 ***
origin_hex1335 0.3009877 0.0298548 10.082 < 2e-16 ***
origin_hex1336 -2.5717095 0.1100441 -23.370 < 2e-16 ***
origin_hex1337 -2.2005122 0.0546102 -40.295 < 2e-16 ***
origin_hex1338 -2.9076901 0.0850588 -34.184 < 2e-16 ***
origin_hex1339 2.8648024 0.0249429 114.854 < 2e-16 ***
origin_hex134 1.0813931 0.0376397 28.730 < 2e-16 ***
origin_hex1340 1.1860083 0.0262177 45.237 < 2e-16 ***
origin_hex1341 -4.5965220 0.7075408 -6.496 8.22e-11 ***
origin_hex1346 1.5485808 0.0254218 60.915 < 2e-16 ***
origin_hex1347 2.4078050 0.0249199 96.622 < 2e-16 ***
origin_hex1348 0.8715209 0.0254454 34.251 < 2e-16 ***
origin_hex1349 0.5668537 0.0259618 21.834 < 2e-16 ***
origin_hex1350 0.7820028 0.0270532 28.906 < 2e-16 ***
origin_hex1353 0.3446533 0.0267027 12.907 < 2e-16 ***
origin_hex1354 0.3499215 0.0276138 12.672 < 2e-16 ***
origin_hex1355 1.1577635 0.0260891 44.377 < 2e-16 ***
origin_hex1357 0.1813423 0.0309432 5.860 4.61e-09 ***
origin_hex1358 1.5114503 0.0256918 58.830 < 2e-16 ***
origin_hex1359 1.9540290 0.0252074 77.518 < 2e-16 ***
origin_hex1360 1.8999290 0.0252469 75.254 < 2e-16 ***
origin_hex1361 3.0060797 0.0250238 120.129 < 2e-16 ***
origin_hex1362 -1.1275824 0.0515010 -21.894 < 2e-16 ***
origin_hex1368 0.4253016 0.0260629 16.318 < 2e-16 ***
origin_hex1369 0.1753763 0.0261345 6.711 1.94e-11 ***
origin_hex1370 1.2074643 0.0251840 47.946 < 2e-16 ***
origin_hex1371 0.6274363 0.0265621 23.622 < 2e-16 ***
origin_hex1372 -0.1897837 0.0279162 -6.798 1.06e-11 ***
origin_hex1373 -1.8255495 0.0527438 -34.612 < 2e-16 ***
origin_hex1374 0.3466699 0.0291109 11.909 < 2e-16 ***
origin_hex1375 1.5853201 0.0259236 61.154 < 2e-16 ***
origin_hex1376 1.0050971 0.0276080 36.406 < 2e-16 ***
origin_hex1379 -1.3833919 0.0423682 -32.652 < 2e-16 ***
origin_hex1380 3.2101733 0.0248615 129.122 < 2e-16 ***
origin_hex1381 2.7504830 0.0249561 110.213 < 2e-16 ***
origin_hex1382 2.2572616 0.0254612 88.655 < 2e-16 ***
origin_hex1383 -0.3287207 0.0344664 -9.537 < 2e-16 ***
origin_hex1388 0.9110740 0.0255151 35.707 < 2e-16 ***
origin_hex1389 0.1734620 0.0262105 6.618 3.64e-11 ***
origin_hex1390 0.6207525 0.0255732 24.274 < 2e-16 ***
origin_hex1391 0.6796850 0.0260289 26.113 < 2e-16 ***
origin_hex1392 0.0925966 0.0292964 3.161 0.001574 **
origin_hex1393 -0.6789458 0.0288651 -23.521 < 2e-16 ***
origin_hex1394 0.7593429 0.0258010 29.431 < 2e-16 ***
origin_hex1395 0.8399271 0.0258738 32.463 < 2e-16 ***
origin_hex1396 2.0996383 0.0251811 83.382 < 2e-16 ***
origin_hex1397 1.8367623 0.0252335 72.791 < 2e-16 ***
origin_hex1398 0.8641199 0.0269634 32.048 < 2e-16 ***
origin_hex1400 2.1179364 0.0255296 82.960 < 2e-16 ***
origin_hex1401 2.2053815 0.0249878 88.258 < 2e-16 ***
origin_hex1402 2.4637052 0.0250623 98.303 < 2e-16 ***
origin_hex1404 2.7503971 0.0289917 94.868 < 2e-16 ***
origin_hex1410 1.2795883 0.0250753 51.030 < 2e-16 ***
origin_hex1411 0.5634369 0.0259276 21.731 < 2e-16 ***
origin_hex1412 0.7170133 0.0254551 28.168 < 2e-16 ***
origin_hex1413 1.4960962 0.0251404 59.510 < 2e-16 ***
origin_hex1414 0.4051654 0.0255140 15.880 < 2e-16 ***
origin_hex1415 0.3108508 0.0263366 11.803 < 2e-16 ***
origin_hex1416 1.1210642 0.0257160 43.594 < 2e-16 ***
origin_hex1417 1.1702158 0.0254934 45.903 < 2e-16 ***
origin_hex1418 1.9644864 0.0251512 78.107 < 2e-16 ***
origin_hex1419 1.3157300 0.0255201 51.557 < 2e-16 ***
origin_hex1422 2.6925288 0.0251831 106.918 < 2e-16 ***
origin_hex1423 3.4189686 0.0249263 137.163 < 2e-16 ***
origin_hex1430 1.0514550 0.0253580 41.464 < 2e-16 ***
origin_hex1431 1.2734648 0.0251419 50.651 < 2e-16 ***
origin_hex1432 1.2886061 0.0251311 51.275 < 2e-16 ***
origin_hex1433 -0.2074512 0.0293454 -7.069 1.56e-12 ***
origin_hex1434 1.2736529 0.0252761 50.390 < 2e-16 ***
origin_hex1435 1.7311743 0.0250014 69.243 < 2e-16 ***
origin_hex1436 -1.1681736 0.0333824 -34.994 < 2e-16 ***
origin_hex1437 2.0521918 0.0250484 81.929 < 2e-16 ***
origin_hex1438 2.3632475 0.0248966 94.922 < 2e-16 ***
origin_hex1439 2.9680276 0.0248405 119.484 < 2e-16 ***
origin_hex1440 -0.9100881 0.0318606 -28.565 < 2e-16 ***
origin_hex1442 2.2814707 0.0255389 89.333 < 2e-16 ***
origin_hex1443 3.4590638 0.0249623 138.572 < 2e-16 ***
origin_hex1444 2.3178575 0.0257460 90.028 < 2e-16 ***
origin_hex1452 0.1493329 0.0258263 5.782 7.37e-09 ***
origin_hex1453 0.6800212 0.0255530 26.612 < 2e-16 ***
origin_hex1454 -0.6561630 0.0306316 -21.421 < 2e-16 ***
origin_hex1455 0.8884835 0.0259563 34.230 < 2e-16 ***
origin_hex1456 1.2274465 0.0253686 48.385 < 2e-16 ***
origin_hex1457 2.1437489 0.0250085 85.721 < 2e-16 ***
origin_hex1458 2.3048084 0.0249449 92.396 < 2e-16 ***
origin_hex1459 1.7566986 0.0250942 70.004 < 2e-16 ***
origin_hex1460 1.1063627 0.0254352 43.497 < 2e-16 ***
origin_hex1461 -0.3894955 0.0297510 -13.092 < 2e-16 ***
origin_hex1464 3.5171023 0.0249365 141.042 < 2e-16 ***
origin_hex1465 3.0717497 0.0251214 122.276 < 2e-16 ***
origin_hex1472 -0.9813180 0.0310765 -31.578 < 2e-16 ***
origin_hex1473 -0.1579978 0.0264956 -5.963 2.47e-09 ***
origin_hex1474 0.8192156 0.0252325 32.467 < 2e-16 ***
origin_hex1475 1.9699440 0.0250063 78.778 < 2e-16 ***
origin_hex1476 1.2879781 0.0254203 50.667 < 2e-16 ***
origin_hex1477 2.6826958 0.0248258 108.061 < 2e-16 ***
origin_hex1478 0.9547368 0.0254565 37.505 < 2e-16 ***
origin_hex1479 1.3026834 0.0253077 51.474 < 2e-16 ***
origin_hex1480 3.0073957 0.0248079 121.227 < 2e-16 ***
origin_hex1481 0.2955533 0.0265930 11.114 < 2e-16 ***
origin_hex1482 0.3839474 0.0277050 13.858 < 2e-16 ***
origin_hex1485 3.1671805 0.0251434 125.965 < 2e-16 ***
origin_hex1494 0.2718640 0.0272672 9.970 < 2e-16 ***
origin_hex1495 0.4178422 0.0258394 16.171 < 2e-16 ***
origin_hex1496 0.5838273 0.0251450 23.218 < 2e-16 ***
origin_hex1497 1.6676448 0.0251850 66.216 < 2e-16 ***
origin_hex1498 2.0378140 0.0249916 81.540 < 2e-16 ***
origin_hex1499 2.1735035 0.0249285 87.189 < 2e-16 ***
origin_hex150 1.5928125 0.0338165 47.102 < 2e-16 ***
origin_hex1500 2.1318376 0.0252291 84.499 < 2e-16 ***
origin_hex1501 2.3611720 0.0249308 94.709 < 2e-16 ***
origin_hex1502 1.7321435 0.0250960 69.021 < 2e-16 ***
origin_hex1506 -2.3619448 0.1112605 -21.229 < 2e-16 ***
origin_hex151 -1.5004188 0.0648893 -23.123 < 2e-16 ***
origin_hex1515 -0.7592251 0.0324455 -23.400 < 2e-16 ***
origin_hex1516 -0.3169966 0.0255788 -12.393 < 2e-16 ***
origin_hex1517 1.0542688 0.0255475 41.267 < 2e-16 ***
origin_hex1518 0.9615910 0.0256936 37.425 < 2e-16 ***
origin_hex1519 2.1221945 0.0251511 84.378 < 2e-16 ***
origin_hex152 -1.5909415 0.0855129 -18.605 < 2e-16 ***
origin_hex1520 0.9274652 0.0255746 36.265 < 2e-16 ***
origin_hex1521 0.1967295 0.0269384 7.303 2.82e-13 ***
origin_hex1522 2.5820203 0.0249018 103.688 < 2e-16 ***
origin_hex1523 0.8292233 0.0288083 28.784 < 2e-16 ***
origin_hex1524 1.2882669 0.0262739 49.032 < 2e-16 ***
origin_hex1527 0.9576001 0.0293424 32.635 < 2e-16 ***
origin_hex153 -2.0115324 0.0501118 -40.141 < 2e-16 ***
origin_hex1535 -1.4703274 0.0778653 -18.883 < 2e-16 ***
origin_hex1536 -1.2704347 0.0407747 -31.157 < 2e-16 ***
origin_hex1537 -0.7171926 0.0291269 -24.623 < 2e-16 ***
origin_hex1538 0.8955735 0.0253638 35.309 < 2e-16 ***
origin_hex1539 1.3155969 0.0251550 52.300 < 2e-16 ***
origin_hex154 1.6163666 0.0271298 59.579 < 2e-16 ***
origin_hex1540 1.8771968 0.0250235 75.017 < 2e-16 ***
origin_hex1541 2.3885308 0.0252251 94.689 < 2e-16 ***
origin_hex1542 0.0131479 0.0285222 0.461 0.644820
origin_hex1543 0.7285350 0.0315312 23.105 < 2e-16 ***
origin_hex1544 1.4013250 0.0254794 54.998 < 2e-16 ***
origin_hex1547 -1.3946111 0.0628364 -22.194 < 2e-16 ***
origin_hex155 -1.2458033 0.0414166 -30.080 < 2e-16 ***
origin_hex1556 -0.8095600 0.0645234 -12.547 < 2e-16 ***
origin_hex1557 -1.4211076 0.0394367 -36.035 < 2e-16 ***
origin_hex1558 -0.0113283 0.0302713 -0.374 0.708237
origin_hex1559 1.4586106 0.0250883 58.139 < 2e-16 ***
origin_hex156 -0.2762719 0.0464198 -5.952 2.66e-09 ***
origin_hex1560 2.3456494 0.0249085 94.171 < 2e-16 ***
origin_hex1561 2.1125912 0.0250684 84.273 < 2e-16 ***
origin_hex1562 -0.8957776 0.0311334 -28.772 < 2e-16 ***
origin_hex1563 0.8278771 0.0256430 32.285 < 2e-16 ***
origin_hex1564 0.1161516 0.0276925 4.194 2.74e-05 ***
origin_hex1565 0.0287935 0.0279967 1.028 0.303735
origin_hex1566 -0.1439264 0.0312250 -4.609 4.04e-06 ***
origin_hex1567 -2.0955498 0.0804019 -26.063 < 2e-16 ***
origin_hex1568 -1.0929263 0.0660382 -16.550 < 2e-16 ***
origin_hex1578 -3.7265116 0.7075723 -5.267 1.39e-07 ***
origin_hex1580 -0.0904396 0.0287598 -3.145 0.001663 **
origin_hex1581 -1.2195735 0.0314668 -38.757 < 2e-16 ***
origin_hex1582 1.8417223 0.0249469 73.826 < 2e-16 ***
origin_hex1583 -0.5054316 0.0317589 -15.915 < 2e-16 ***
origin_hex1584 0.3977684 0.0265544 14.979 < 2e-16 ***
origin_hex1585 1.2198772 0.0261641 46.624 < 2e-16 ***
origin_hex1586 0.1637462 0.0274063 5.975 2.30e-09 ***
origin_hex1589 -2.7617885 0.1145259 -24.115 < 2e-16 ***
origin_hex1590 -1.1981588 0.0625560 -19.153 < 2e-16 ***
origin_hex1600 1.9032722 0.0266106 71.523 < 2e-16 ***
origin_hex1601 0.3432527 0.0256897 13.361 < 2e-16 ***
origin_hex1602 1.4341786 0.0253309 56.618 < 2e-16 ***
origin_hex1603 1.8924183 0.0249667 75.798 < 2e-16 ***
origin_hex1604 0.7484161 0.0257747 29.037 < 2e-16 ***
origin_hex1605 1.7007606 0.0250027 68.023 < 2e-16 ***
origin_hex1606 1.6970394 0.0262087 64.751 < 2e-16 ***
origin_hex1607 0.5983350 0.0263000 22.750 < 2e-16 ***
origin_hex1608 2.7355650 0.0250304 109.290 < 2e-16 ***
origin_hex1609 2.4808691 0.0252521 98.244 < 2e-16 ***
origin_hex1610 -0.9194034 0.0670438 -13.713 < 2e-16 ***
origin_hex1622 0.9705860 0.0320628 30.271 < 2e-16 ***
origin_hex1623 1.8849570 0.0249712 75.485 < 2e-16 ***
origin_hex1624 0.7452920 0.0258760 28.802 < 2e-16 ***
origin_hex1625 2.0780321 0.0250571 82.932 < 2e-16 ***
origin_hex1626 2.6755694 0.0248710 107.578 < 2e-16 ***
origin_hex1627 1.1794210 0.0255534 46.155 < 2e-16 ***
origin_hex1628 2.7825871 0.0248883 111.803 < 2e-16 ***
origin_hex1629 1.7674555 0.0255377 69.210 < 2e-16 ***
origin_hex1630 1.6765917 0.0258368 64.892 < 2e-16 ***
origin_hex1631 -1.6456701 0.0641336 -25.660 < 2e-16 ***
origin_hex1642 -0.6915522 0.0369280 -18.727 < 2e-16 ***
origin_hex1643 1.8978753 0.0250269 75.833 < 2e-16 ***
origin_hex1644 -0.1330742 0.0292804 -4.545 5.50e-06 ***
origin_hex1645 1.1274112 0.0253427 44.487 < 2e-16 ***
origin_hex1646 1.1283863 0.0260826 43.262 < 2e-16 ***
origin_hex1647 1.2649984 0.0252557 50.088 < 2e-16 ***
origin_hex1648 1.9418327 0.0250806 77.424 < 2e-16 ***
origin_hex1649 2.6823705 0.0249194 107.642 < 2e-16 ***
origin_hex1650 2.7290278 0.0251929 108.325 < 2e-16 ***
origin_hex1664 -3.2937067 0.1686522 -19.530 < 2e-16 ***
origin_hex1665 2.0671203 0.0249553 82.833 < 2e-16 ***
origin_hex1666 0.8330536 0.0255556 32.598 < 2e-16 ***
origin_hex1667 1.8369642 0.0267109 68.772 < 2e-16 ***
origin_hex1668 1.9861343 0.0250672 79.232 < 2e-16 ***
origin_hex1670 2.6940504 0.0248829 108.269 < 2e-16 ***
origin_hex1671 3.2131876 0.0251841 127.588 < 2e-16 ***
origin_hex1672 2.8932691 0.0253282 114.231 < 2e-16 ***
origin_hex1684 1.0605664 0.0272982 38.851 < 2e-16 ***
origin_hex1685 1.6732544 0.0251923 66.419 < 2e-16 ***
origin_hex1686 1.5647060 0.0252002 62.091 < 2e-16 ***
origin_hex1687 1.1229489 0.0256742 43.738 < 2e-16 ***
origin_hex1688 0.7111459 0.0259463 27.408 < 2e-16 ***
origin_hex1689 0.2004757 0.0273515 7.330 2.31e-13 ***
origin_hex1690 1.5650946 0.0254636 61.464 < 2e-16 ***
origin_hex1691 2.3819638 0.0250297 95.166 < 2e-16 ***
origin_hex1692 1.8603529 0.0258838 71.873 < 2e-16 ***
origin_hex1706 1.6412057 0.0253844 64.654 < 2e-16 ***
origin_hex1707 1.4243946 0.0251344 56.671 < 2e-16 ***
origin_hex1708 2.0225996 0.0249800 80.969 < 2e-16 ***
origin_hex1709 1.1132918 0.0254907 43.674 < 2e-16 ***
origin_hex1710 2.3390241 0.0249943 93.582 < 2e-16 ***
origin_hex1711 2.0296225 0.0251276 80.773 < 2e-16 ***
origin_hex1712 2.7055199 0.0248806 108.740 < 2e-16 ***
origin_hex1713 0.3656763 0.0275295 13.283 < 2e-16 ***
origin_hex1714 2.8628437 0.0250793 114.152 < 2e-16 ***
origin_hex172 -0.1125550 0.0805131 -1.398 0.162122
origin_hex1727 1.7605036 0.0251810 69.914 < 2e-16 ***
origin_hex1728 1.6779836 0.0250978 66.858 < 2e-16 ***
origin_hex1729 1.1527533 0.0252665 45.624 < 2e-16 ***
origin_hex1730 -0.7888819 0.0317383 -24.856 < 2e-16 ***
origin_hex1731 1.6346244 0.0252284 64.793 < 2e-16 ***
origin_hex1732 2.4490376 0.0249216 98.270 < 2e-16 ***
origin_hex1733 2.0998771 0.0250504 83.826 < 2e-16 ***
origin_hex1734 2.3080311 0.0250290 92.214 < 2e-16 ***
origin_hex1735 3.6620302 0.0254845 143.696 < 2e-16 ***
origin_hex174 -2.5352929 0.0540534 -46.903 < 2e-16 ***
origin_hex1748 0.3247978 0.0263314 12.335 < 2e-16 ***
origin_hex1749 1.4189008 0.0251436 56.432 < 2e-16 ***
origin_hex175 0.6621930 0.0278931 23.740 < 2e-16 ***
origin_hex1750 0.6401362 0.0256647 24.942 < 2e-16 ***
origin_hex1751 0.0208282 0.0268009 0.777 0.437072
origin_hex1753 2.2596340 0.0249608 90.527 < 2e-16 ***
origin_hex1754 2.7505516 0.0248772 110.565 < 2e-16 ***
origin_hex1755 2.1967435 0.0250406 87.727 < 2e-16 ***
origin_hex1756 2.1287341 0.0252193 84.409 < 2e-16 ***
origin_hex1757 0.1936952 0.0348672 5.555 2.77e-08 ***
origin_hex176 2.0766525 0.0260606 79.685 < 2e-16 ***
origin_hex1769 1.3306814 0.0252998 52.597 < 2e-16 ***
origin_hex1770 0.9335395 0.0264543 35.289 < 2e-16 ***
origin_hex1771 -0.0088957 0.0265801 -0.335 0.737869
origin_hex1772 -1.0562745 0.0343155 -30.781 < 2e-16 ***
origin_hex1774 2.2019279 0.0250192 88.009 < 2e-16 ***
origin_hex1775 1.7357122 0.0252383 68.773 < 2e-16 ***
origin_hex1776 2.8744247 0.0248945 115.464 < 2e-16 ***
origin_hex1777 3.0592795 0.0249808 122.465 < 2e-16 ***
origin_hex1778 2.6122655 0.0266236 98.119 < 2e-16 ***
origin_hex1790 1.9756985 0.0251224 78.643 < 2e-16 ***
origin_hex1791 1.1818428 0.0254413 46.454 < 2e-16 ***
origin_hex1792 1.4171568 0.0255102 55.552 < 2e-16 ***
origin_hex1793 -0.7473075 0.0280749 -26.618 < 2e-16 ***
origin_hex1794 -1.2341257 0.0371927 -33.182 < 2e-16 ***
origin_hex1795 -1.2947082 0.0410025 -31.576 < 2e-16 ***
origin_hex1796 2.5796856 0.0250089 103.151 < 2e-16 ***
origin_hex1797 2.6099445 0.0249615 104.559 < 2e-16 ***
origin_hex1798 2.7252000 0.0249654 109.159 < 2e-16 ***
origin_hex1799 1.5640868 0.0260196 60.112 < 2e-16 ***
origin_hex1800 0.4966604 0.0375769 13.217 < 2e-16 ***
origin_hex1811 1.1030075 0.0256916 42.933 < 2e-16 ***
origin_hex1812 2.2308013 0.0249187 89.523 < 2e-16 ***
origin_hex1813 1.9073687 0.0249726 76.379 < 2e-16 ***
origin_hex1817 2.3522082 0.0252090 93.308 < 2e-16 ***
origin_hex1818 2.5391851 0.0250442 101.388 < 2e-16 ***
origin_hex1819 3.0246644 0.0249369 121.293 < 2e-16 ***
origin_hex1820 -0.1233590 0.0422744 -2.918 0.003522 **
origin_hex1832 1.8039645 0.0252001 71.586 < 2e-16 ***
origin_hex1833 1.4155688 0.0253471 55.847 < 2e-16 ***
origin_hex1834 1.6011804 0.0250836 63.834 < 2e-16 ***
origin_hex1835 0.9065157 0.0257114 35.257 < 2e-16 ***
origin_hex1837 -2.0385385 0.0657687 -30.996 < 2e-16 ***
origin_hex1839 2.1396397 0.0255111 83.871 < 2e-16 ***
origin_hex1840 3.7753514 0.0248210 152.103 < 2e-16 ***
origin_hex1841 -0.4034219 0.0423848 -9.518 < 2e-16 ***
origin_hex1842 3.2692673 0.0269510 121.304 < 2e-16 ***
origin_hex1853 1.6955746 0.0251436 67.436 < 2e-16 ***
origin_hex1854 1.9948527 0.0250899 79.508 < 2e-16 ***
origin_hex1855 2.2801490 0.0250089 91.174 < 2e-16 ***
origin_hex1858 0.0203325 0.0353483 0.575 0.565153
origin_hex1860 3.3934607 0.0260495 130.270 < 2e-16 ***
origin_hex1861 2.4262970 0.0250933 96.691 < 2e-16 ***
origin_hex1874 2.0085929 0.0253648 79.188 < 2e-16 ***
origin_hex1875 0.1139840 0.0276250 4.126 3.69e-05 ***
origin_hex1876 2.3129829 0.0267083 86.602 < 2e-16 ***
origin_hex1877 1.8761921 0.0251139 74.707 < 2e-16 ***
origin_hex1880 -1.5098766 0.0563834 -26.779 < 2e-16 ***
origin_hex1882 2.6159508 0.0251376 104.065 < 2e-16 ***
origin_hex1883 2.8973496 0.0261998 110.587 < 2e-16 ***
origin_hex1895 2.0236563 0.0250930 80.646 < 2e-16 ***
origin_hex1896 0.3154727 0.0264834 11.912 < 2e-16 ***
origin_hex1897 0.9548835 0.0261997 36.446 < 2e-16 ***
origin_hex1898 -3.1813914 0.1347557 -23.609 < 2e-16 ***
origin_hex1901 -1.5517045 0.0638966 -24.285 < 2e-16 ***
origin_hex1903 1.8929495 0.0261657 72.345 < 2e-16 ***
origin_hex1917 0.6381010 0.0262294 24.328 < 2e-16 ***
origin_hex1918 2.4575839 0.0253057 97.116 < 2e-16 ***
origin_hex1919 1.9298841 0.0251769 76.653 < 2e-16 ***
origin_hex1922 -0.2950634 0.0375991 -7.848 4.24e-15 ***
origin_hex1924 1.8034578 0.0263490 68.445 < 2e-16 ***
origin_hex1937 1.2774075 0.0255479 50.001 < 2e-16 ***
origin_hex1938 1.8850947 0.0250516 75.248 < 2e-16 ***
origin_hex1939 2.8494222 0.0249952 113.999 < 2e-16 ***
origin_hex1942 -1.6806124 0.0531210 -31.637 < 2e-16 ***
origin_hex195 -2.4704790 0.0850341 -29.053 < 2e-16 ***
origin_hex1959 0.9482997 0.0260556 36.395 < 2e-16 ***
origin_hex196 -1.5171420 0.0490463 -30.933 < 2e-16 ***
origin_hex1960 2.8722302 0.0248322 115.665 < 2e-16 ***
origin_hex1961 1.3878766 0.0255540 54.312 < 2e-16 ***
origin_hex1962 2.2180276 0.0250368 88.591 < 2e-16 ***
origin_hex1964 -2.5091485 0.0915371 -27.411 < 2e-16 ***
origin_hex197 -2.0946115 0.1127635 -18.575 < 2e-16 ***
origin_hex1979 1.1680235 0.0258177 45.241 < 2e-16 ***
origin_hex1980 -0.6666170 0.0281328 -23.695 < 2e-16 ***
origin_hex1981 2.0499122 0.0250388 81.869 < 2e-16 ***
origin_hex1982 1.0021533 0.0268795 37.283 < 2e-16 ***
origin_hex1983 2.2375554 0.0250437 89.346 < 2e-16 ***
origin_hex1984 1.0897135 0.0257383 42.338 < 2e-16 ***
origin_hex1985 1.5753692 0.0254257 61.960 < 2e-16 ***
origin_hex2001 1.5495666 0.0253231 61.192 < 2e-16 ***
origin_hex2002 2.0664455 0.0249498 82.824 < 2e-16 ***
origin_hex2003 1.6995711 0.0251663 67.534 < 2e-16 ***
origin_hex2004 2.5608430 0.0250126 102.382 < 2e-16 ***
origin_hex2005 2.3884590 0.0250102 95.499 < 2e-16 ***
origin_hex2006 0.9733600 0.0262697 37.053 < 2e-16 ***
origin_hex2007 -0.3053902 0.0292959 -10.424 < 2e-16 ***
origin_hex2022 1.8561347 0.0253127 73.328 < 2e-16 ***
origin_hex2023 2.3226631 0.0249371 93.141 < 2e-16 ***
origin_hex2024 1.7750985 0.0251020 70.715 < 2e-16 ***
origin_hex2025 1.8924984 0.0250841 75.446 < 2e-16 ***
origin_hex2026 0.4668340 0.0271821 17.174 < 2e-16 ***
origin_hex2027 2.6709423 0.0249842 106.905 < 2e-16 ***
origin_hex2043 1.0942740 0.0257791 42.448 < 2e-16 ***
origin_hex2044 1.9658649 0.0250159 78.585 < 2e-16 ***
origin_hex2045 -3.0341643 0.0783753 -38.713 < 2e-16 ***
origin_hex2046 2.0045183 0.0249643 80.295 < 2e-16 ***
origin_hex2047 1.7916592 0.0251811 71.151 < 2e-16 ***
origin_hex2048 2.0942601 0.0250857 83.484 < 2e-16 ***
origin_hex2049 -1.7376753 0.0284200 -61.143 < 2e-16 ***
origin_hex2064 2.0542074 0.0251278 81.750 < 2e-16 ***
origin_hex2065 0.4133106 0.0259954 15.899 < 2e-16 ***
origin_hex2066 0.2332743 0.0320811 7.271 3.56e-13 ***
origin_hex2067 3.1381282 0.0248151 126.460 < 2e-16 ***
origin_hex2068 1.6871573 0.0255712 65.979 < 2e-16 ***
origin_hex2069 1.7627432 0.0252652 69.770 < 2e-16 ***
origin_hex2085 0.5502362 0.0263296 20.898 < 2e-16 ***
origin_hex2086 2.2052759 0.0249937 88.233 < 2e-16 ***
origin_hex2087 1.0266839 0.0256521 40.023 < 2e-16 ***
origin_hex2088 1.8007129 0.0250720 71.822 < 2e-16 ***
origin_hex2089 1.1908155 0.0254962 46.706 < 2e-16 ***
origin_hex2090 2.8358892 0.0249024 113.880 < 2e-16 ***
origin_hex2091 -2.6997015 0.0723071 -37.337 < 2e-16 ***
origin_hex2105 -1.3700732 0.1040112 -13.172 < 2e-16 ***
origin_hex2106 -0.5705434 0.0309287 -18.447 < 2e-16 ***
origin_hex2107 0.3121434 0.0262836 11.876 < 2e-16 ***
origin_hex2108 1.7621918 0.0252380 69.823 < 2e-16 ***
origin_hex2109 1.3656809 0.0250720 54.470 < 2e-16 ***
origin_hex2110 1.2995969 0.0256579 50.651 < 2e-16 ***
origin_hex2111 -1.7423598 0.0463856 -37.563 < 2e-16 ***
origin_hex2128 0.0434532 0.0278351 1.561 0.118502
origin_hex2129 -0.2804246 0.0285459 -9.824 < 2e-16 ***
origin_hex2130 2.0853799 0.0249933 83.438 < 2e-16 ***
origin_hex2131 2.1026744 0.0250727 83.863 < 2e-16 ***
origin_hex2132 1.5337436 0.0253514 60.499 < 2e-16 ***
origin_hex2148 0.6942954 0.0269803 25.733 < 2e-16 ***
origin_hex2149 -0.5861300 0.0290710 -20.162 < 2e-16 ***
origin_hex215 -1.4496231 0.0864291 -16.772 < 2e-16 ***
origin_hex2150 1.6575101 0.0251479 65.911 < 2e-16 ***
origin_hex2151 2.4882457 0.0249073 99.900 < 2e-16 ***
origin_hex2152 2.7187916 0.0249431 109.000 < 2e-16 ***
origin_hex2153 1.7679409 0.0252786 69.938 < 2e-16 ***
origin_hex216 2.9492471 0.0259721 113.554 < 2e-16 ***
origin_hex217 -0.8052628 0.0331182 -24.315 < 2e-16 ***
origin_hex2171 1.0851265 0.0256530 42.300 < 2e-16 ***
origin_hex2172 1.5519420 0.0258216 60.103 < 2e-16 ***
origin_hex2173 1.7258932 0.0251857 68.527 < 2e-16 ***
origin_hex2174 2.0127024 0.0252008 79.867 < 2e-16 ***
origin_hex2191 0.6204281 0.0267610 23.184 < 2e-16 ***
origin_hex2192 0.3756401 0.0268734 13.978 < 2e-16 ***
origin_hex2193 1.4056656 0.0253843 55.375 < 2e-16 ***
origin_hex2194 1.7909740 0.0251624 71.177 < 2e-16 ***
origin_hex2195 1.3151932 0.0317265 41.454 < 2e-16 ***
origin_hex2212 -1.7789521 0.0836230 -21.273 < 2e-16 ***
origin_hex2213 -1.7430523 0.0453729 -38.416 < 2e-16 ***
origin_hex2214 -1.2299517 0.0349757 -35.166 < 2e-16 ***
origin_hex2215 1.4743349 0.0255994 57.593 < 2e-16 ***
origin_hex2216 0.5481960 0.0268511 20.416 < 2e-16 ***
origin_hex2233 -1.5874487 0.0460710 -34.457 < 2e-16 ***
origin_hex2234 -1.2174328 0.0321721 -37.841 < 2e-16 ***
origin_hex2235 0.3233091 0.0278865 11.594 < 2e-16 ***
origin_hex2236 0.1448023 0.0276686 5.233 1.66e-07 ***
origin_hex2237 -1.7859262 0.0589094 -30.317 < 2e-16 ***
origin_hex2256 -3.9752920 0.0563301 -70.571 < 2e-16 ***
origin_hex2257 -0.0972844 0.0308607 -3.152 0.001620 **
origin_hex2258 -0.7929278 0.0302930 -26.175 < 2e-16 ***
origin_hex2259 -1.1162213 0.0432457 -25.811 < 2e-16 ***
origin_hex2277 -0.3242203 0.0463780 -6.991 2.73e-12 ***
origin_hex2278 0.6085843 0.0288388 21.103 < 2e-16 ***
origin_hex2279 -0.7448597 0.0311868 -23.884 < 2e-16 ***
origin_hex2280 -2.9325861 0.1036302 -28.299 < 2e-16 ***
origin_hex2297 1.7233281 0.0261552 65.889 < 2e-16 ***
origin_hex23 -2.0553266 0.1033543 -19.886 < 2e-16 ***
origin_hex2300 -1.8281005 0.0644228 -28.377 < 2e-16 ***
origin_hex2301 -0.5032005 0.0307196 -16.380 < 2e-16 ***
origin_hex2318 -0.0826860 0.0306512 -2.698 0.006983 **
origin_hex2319 0.5923877 0.0267453 22.149 < 2e-16 ***
origin_hex2322 0.5351529 0.0275015 19.459 < 2e-16 ***
origin_hex2337 1.5573818 0.0299291 52.036 < 2e-16 ***
origin_hex2341 1.2871881 0.0262751 48.989 < 2e-16 ***
origin_hex2343 0.0139103 0.0283759 0.490 0.623982
origin_hex2361 -0.0026747 0.0269361 -0.099 0.920901
origin_hex2364 -2.7004924 0.0690482 -39.110 < 2e-16 ***
origin_hex237 -2.8710984 0.1582483 -18.143 < 2e-16 ***
origin_hex2379 0.8519766 0.0316799 26.893 < 2e-16 ***
origin_hex238 -1.2031069 0.0569249 -21.135 < 2e-16 ***
origin_hex2384 0.3224301 0.0286278 11.263 < 2e-16 ***
origin_hex239 -1.9796779 0.1601840 -12.359 < 2e-16 ***
origin_hex2405 -0.2121042 0.0287121 -7.387 1.50e-13 ***
origin_hex2406 -1.7077806 0.0413989 -41.252 < 2e-16 ***
origin_hex2426 -0.3249976 0.0362705 -8.960 < 2e-16 ***
origin_hex2427 0.4714389 0.0269939 17.465 < 2e-16 ***
origin_hex2505 0.6723879 0.0443492 15.161 < 2e-16 ***
origin_hex257 -2.2439028 0.0621331 -36.114 < 2e-16 ***
origin_hex258 -0.5668883 0.0370469 -15.302 < 2e-16 ***
origin_hex259 -1.4489027 0.0478306 -30.292 < 2e-16 ***
origin_hex278 -1.0949131 0.0464025 -23.596 < 2e-16 ***
origin_hex279 -1.8422408 0.0497338 -37.042 < 2e-16 ***
origin_hex280 -1.8347489 0.0519875 -35.292 < 2e-16 ***
origin_hex298 -4.7108653 0.3345373 -14.082 < 2e-16 ***
origin_hex299 -2.2280707 0.0558070 -39.925 < 2e-16 ***
origin_hex300 1.5792650 0.0264729 59.656 < 2e-16 ***
origin_hex320 -2.9026051 0.0686628 -42.273 < 2e-16 ***
origin_hex321 -1.3395409 0.0757579 -17.682 < 2e-16 ***
origin_hex322 -0.7957469 0.0529790 -15.020 < 2e-16 ***
origin_hex340 -0.6582619 0.0376092 -17.503 < 2e-16 ***
origin_hex341 -2.3351528 0.0509744 -45.810 < 2e-16 ***
origin_hex342 -1.1614241 0.0482308 -24.081 < 2e-16 ***
origin_hex363 -0.8900518 0.0448055 -19.865 < 2e-16 ***
origin_hex364 -0.3220265 0.0365207 -8.818 < 2e-16 ***
origin_hex383 -1.1754181 0.0401061 -29.308 < 2e-16 ***
origin_hex384 -4.2210755 0.0578406 -72.978 < 2e-16 ***
origin_hex385 -0.4976245 0.0524180 -9.493 < 2e-16 ***
origin_hex404 -0.2109085 0.0425004 -4.963 6.96e-07 ***
origin_hex405 -1.9156970 0.0547396 -34.997 < 2e-16 ***
origin_hex406 3.3592633 0.0250846 133.917 < 2e-16 ***
origin_hex407 -0.8182729 0.0517607 -15.809 < 2e-16 ***
origin_hex408 -0.0792948 0.0336953 -2.353 0.018608 *
origin_hex425 -2.8184540 0.0916255 -30.761 < 2e-16 ***
origin_hex426 -1.6408258 0.0386065 -42.501 < 2e-16 ***
origin_hex427 -1.3230052 0.0432551 -30.586 < 2e-16 ***
origin_hex428 -1.9167648 0.0817115 -23.458 < 2e-16 ***
origin_hex429 -0.5903488 0.0336292 -17.555 < 2e-16 ***
origin_hex44 -4.4574883 0.1425948 -31.260 < 2e-16 ***
origin_hex446 -1.9192679 0.0639389 -30.017 < 2e-16 ***
origin_hex447 -2.0525796 0.0510140 -40.236 < 2e-16 ***
origin_hex448 -0.5167058 0.0372461 -13.873 < 2e-16 ***
origin_hex449 2.1306831 0.0255282 83.464 < 2e-16 ***
origin_hex450 -0.5251122 0.0315811 -16.627 < 2e-16 ***
origin_hex46 -2.6252524 0.0914100 -28.720 < 2e-16 ***
origin_hex468 -0.2473540 0.0371650 -6.656 2.82e-11 ***
origin_hex469 0.0166682 0.0302675 0.551 0.581842
origin_hex470 2.4206739 0.0251870 96.108 < 2e-16 ***
origin_hex471 -0.0196792 0.0297519 -0.661 0.508329
origin_hex488 -2.6265282 0.0628427 -41.795 < 2e-16 ***
origin_hex489 -3.4423434 0.2512552 -13.701 < 2e-16 ***
origin_hex490 1.0408735 0.0272591 38.184 < 2e-16 ***
origin_hex491 1.4339863 0.0258713 55.428 < 2e-16 ***
origin_hex493 -3.1678646 0.1409181 -22.480 < 2e-16 ***
origin_hex494 -1.2085535 0.0639431 -18.900 < 2e-16 ***
origin_hex509 -1.7985236 0.0420673 -42.754 < 2e-16 ***
origin_hex510 -1.4605311 0.0351340 -41.570 < 2e-16 ***
origin_hex511 0.4771824 0.0269164 17.728 < 2e-16 ***
origin_hex512 2.7446353 0.0249476 110.016 < 2e-16 ***
origin_hex513 -0.4685181 0.0347675 -13.476 < 2e-16 ***
origin_hex514 -0.4531580 0.0443819 -10.210 < 2e-16 ***
origin_hex515 -1.9801222 0.1396492 -14.179 < 2e-16 ***
origin_hex530 -3.0492497 0.0846963 -36.002 < 2e-16 ***
origin_hex531 -0.6602182 0.0321565 -20.531 < 2e-16 ***
origin_hex532 -0.9247808 0.0338119 -27.351 < 2e-16 ***
origin_hex533 2.8716066 0.0249438 115.123 < 2e-16 ***
origin_hex534 3.4714904 0.0249665 139.046 < 2e-16 ***
origin_hex536 0.2155358 0.0352907 6.107 1.01e-09 ***
origin_hex537 -1.9547052 0.1396238 -14.000 < 2e-16 ***
origin_hex538 -2.1490335 0.2056583 -10.450 < 2e-16 ***
origin_hex539 -3.2253115 0.5788545 -5.572 2.52e-08 ***
origin_hex551 -2.7909584 0.0595192 -46.892 < 2e-16 ***
origin_hex552 -0.3382139 0.0442911 -7.636 2.24e-14 ***
origin_hex553 -0.7902179 0.0313345 -25.219 < 2e-16 ***
origin_hex554 2.2884381 0.0249771 91.621 < 2e-16 ***
origin_hex555 2.1324431 0.0256412 83.165 < 2e-16 ***
origin_hex559 -1.3679796 0.0967863 -14.134 < 2e-16 ***
origin_hex560 0.7531582 0.0535429 14.066 < 2e-16 ***
origin_hex572 -4.0794129 0.2252573 -18.110 < 2e-16 ***
origin_hex573 -2.0435180 0.0501971 -40.710 < 2e-16 ***
origin_hex574 -0.9775258 0.0437499 -22.343 < 2e-16 ***
origin_hex575 3.8067958 0.0247964 153.522 < 2e-16 ***
origin_hex576 2.3957950 0.0251773 95.157 < 2e-16 ***
origin_hex578 -2.3558224 0.1101212 -21.393 < 2e-16 ***
origin_hex582 -2.0883194 0.1101068 -18.966 < 2e-16 ***
origin_hex583 -2.1577969 0.1979927 -10.898 < 2e-16 ***
origin_hex584 0.7871959 0.0604994 13.012 < 2e-16 ***
origin_hex593 -1.3823946 0.0553964 -24.955 < 2e-16 ***
origin_hex594 -0.8443990 0.0359332 -23.499 < 2e-16 ***
origin_hex595 -0.8081952 0.0316431 -25.541 < 2e-16 ***
origin_hex596 2.1898030 0.0250448 87.435 < 2e-16 ***
origin_hex597 -0.8960247 0.0638800 -14.027 < 2e-16 ***
origin_hex603 -1.5241760 0.1116356 -13.653 < 2e-16 ***
origin_hex604 -3.0756554 0.2688572 -11.440 < 2e-16 ***
origin_hex615 -2.3198364 0.0504477 -45.985 < 2e-16 ***
origin_hex616 -1.2597719 0.0382071 -32.972 < 2e-16 ***
origin_hex617 -0.2984404 0.0301950 -9.884 < 2e-16 ***
origin_hex618 2.6719436 0.0249634 107.034 < 2e-16 ***
origin_hex620 -0.3806567 0.0408754 -9.313 < 2e-16 ***
origin_hex637 -1.5605444 0.0463545 -33.665 < 2e-16 ***
origin_hex638 2.2161466 0.0250200 88.575 < 2e-16 ***
origin_hex657 0.0433521 0.0296160 1.464 0.143247
origin_hex658 1.5803948 0.0254756 62.036 < 2e-16 ***
origin_hex659 1.8395570 0.0252532 72.845 < 2e-16 ***
origin_hex66 -3.6380285 0.1292088 -28.156 < 2e-16 ***
origin_hex660 3.0389586 0.0248917 122.087 < 2e-16 ***
origin_hex662 2.8150013 0.0258217 109.017 < 2e-16 ***
origin_hex67 -0.7686427 0.0367413 -20.920 < 2e-16 ***
origin_hex677 -0.4177704 0.0335382 -12.457 < 2e-16 ***
origin_hex678 -2.0444370 0.0501396 -40.775 < 2e-16 ***
origin_hex679 2.8273720 0.0249405 113.365 < 2e-16 ***
origin_hex68 -2.9531333 0.1319041 -22.388 < 2e-16 ***
origin_hex680 3.1369497 0.0249316 125.822 < 2e-16 ***
origin_hex681 1.8772469 0.0260696 72.009 < 2e-16 ***
origin_hex699 -0.3644232 0.0331482 -10.994 < 2e-16 ***
origin_hex700 1.8220764 0.0253965 71.745 < 2e-16 ***
origin_hex701 1.5392594 0.0254346 60.518 < 2e-16 ***
origin_hex702 2.9629993 0.0249126 118.936 < 2e-16 ***
origin_hex704 -0.1806673 0.0403632 -4.476 7.60e-06 ***
origin_hex722 -0.1343072 0.0304684 -4.408 1.04e-05 ***
origin_hex725 -1.0000782 0.0500741 -19.972 < 2e-16 ***
origin_hex741 0.2202188 0.0296805 7.420 1.17e-13 ***
origin_hex743 0.1224351 0.0275661 4.442 8.93e-06 ***
origin_hex744 2.4588699 0.0250596 98.121 < 2e-16 ***
origin_hex761 -0.5030750 0.0369675 -13.609 < 2e-16 ***
origin_hex762 1.6735822 0.0256792 65.173 < 2e-16 ***
origin_hex763 -1.4979987 0.0370276 -40.456 < 2e-16 ***
origin_hex764 2.9141102 0.0248999 117.033 < 2e-16 ***
origin_hex765 1.8594042 0.0259805 71.569 < 2e-16 ***
origin_hex767 3.5908317 0.0249496 143.923 < 2e-16 ***
origin_hex772 -1.2348951 0.0762644 -16.192 < 2e-16 ***
origin_hex784 -1.0592556 0.0340369 -31.121 < 2e-16 ***
origin_hex785 1.9511553 0.0250461 77.903 < 2e-16 ***
origin_hex786 1.6861207 0.0253742 66.450 < 2e-16 ***
origin_hex787 2.1993682 0.0256974 85.587 < 2e-16 ***
origin_hex788 2.8433915 0.0252378 112.664 < 2e-16 ***
origin_hex789 0.4686303 0.0268078 17.481 < 2e-16 ***
origin_hex803 -2.2951423 0.0548750 -41.825 < 2e-16 ***
origin_hex804 2.5600135 0.0250332 102.265 < 2e-16 ***
origin_hex805 2.4409318 0.0249091 97.994 < 2e-16 ***
origin_hex806 2.1983667 0.0250613 87.719 < 2e-16 ***
origin_hex807 2.9894244 0.0250735 119.226 < 2e-16 ***
origin_hex808 1.2891261 0.0269740 47.791 < 2e-16 ***
origin_hex809 3.2620616 0.0249034 130.989 < 2e-16 ***
origin_hex810 2.3243786 0.0253074 91.846 < 2e-16 ***
origin_hex814 0.4938718 0.0371753 13.285 < 2e-16 ***
origin_hex819 1.0755606 0.0313579 34.300 < 2e-16 ***
origin_hex824 -1.2726305 0.0457226 -27.834 < 2e-16 ***
origin_hex826 0.0405204 0.0266063 1.523 0.127768
origin_hex827 2.2528295 0.0249878 90.157 < 2e-16 ***
origin_hex828 2.6177391 0.0249456 104.938 < 2e-16 ***
origin_hex829 2.7539596 0.0250725 109.840 < 2e-16 ***
origin_hex830 3.0229391 0.0251985 119.965 < 2e-16 ***
origin_hex831 3.8106607 0.0247900 153.718 < 2e-16 ***
origin_hex832 2.8598206 0.0255311 112.013 < 2e-16 ***
origin_hex835 -0.2462981 0.0388203 -6.345 2.23e-10 ***
origin_hex844 -2.7661654 0.0818111 -33.812 < 2e-16 ***
origin_hex846 1.7018341 0.0252208 67.477 < 2e-16 ***
origin_hex847 0.6107017 0.0262194 23.292 < 2e-16 ***
origin_hex848 2.0174052 0.0251184 80.316 < 2e-16 ***
origin_hex849 1.0535112 0.0258841 40.701 < 2e-16 ***
origin_hex850 2.0959971 0.0252445 83.028 < 2e-16 ***
origin_hex851 2.7455729 0.0250016 109.816 < 2e-16 ***
origin_hex852 2.4574092 0.0254189 96.676 < 2e-16 ***
origin_hex853 3.6875122 0.0250743 147.063 < 2e-16 ***
origin_hex854 0.3335798 0.0360354 9.257 < 2e-16 ***
origin_hex855 -0.7468777 0.0500242 -14.930 < 2e-16 ***
origin_hex856 0.2463104 0.0314437 7.833 4.75e-15 ***
origin_hex86 -2.4243504 0.0796781 -30.427 < 2e-16 ***
origin_hex866 -0.7465489 0.0404565 -18.453 < 2e-16 ***
origin_hex867 0.6513656 0.0273394 23.825 < 2e-16 ***
origin_hex868 -0.2035735 0.0303059 -6.717 1.85e-11 ***
origin_hex869 2.6010365 0.0253607 102.562 < 2e-16 ***
origin_hex87 -2.3769453 0.0861209 -27.600 < 2e-16 ***
origin_hex870 3.0803143 0.0248379 124.017 < 2e-16 ***
origin_hex871 2.9109974 0.0254121 114.552 < 2e-16 ***
origin_hex872 0.9055614 0.0269022 33.661 < 2e-16 ***
origin_hex873 1.2449190 0.0266073 46.789 < 2e-16 ***
origin_hex874 0.8917086 0.0259596 34.350 < 2e-16 ***
origin_hex875 -1.9651878 0.0765542 -25.671 < 2e-16 ***
origin_hex876 -0.5537333 0.0400706 -13.819 < 2e-16 ***
origin_hex877 -1.0847833 0.0473861 -22.892 < 2e-16 ***
origin_hex88 0.0294941 0.0323970 0.910 0.362614
origin_hex887 0.1232646 0.0280707 4.391 1.13e-05 ***
origin_hex888 1.6062931 0.0255797 62.796 < 2e-16 ***
origin_hex889 -1.5689296 0.0419142 -37.432 < 2e-16 ***
origin_hex89 -1.4533088 0.0563875 -25.774 < 2e-16 ***
origin_hex890 2.5493098 0.0249343 102.241 < 2e-16 ***
origin_hex891 0.6135031 0.0272081 22.549 < 2e-16 ***
origin_hex893 2.8034087 0.0249535 112.345 < 2e-16 ***
origin_hex894 0.8336945 0.0268578 31.041 < 2e-16 ***
origin_hex895 0.3654712 0.0288250 12.679 < 2e-16 ***
origin_hex896 -0.4528823 0.0352409 -12.851 < 2e-16 ***
origin_hex897 -2.2075413 0.0685450 -32.206 < 2e-16 ***
origin_hex898 -0.3601007 0.0383412 -9.392 < 2e-16 ***
origin_hex90 -1.5022064 0.1351815 -11.113 < 2e-16 ***
origin_hex908 1.3739696 0.0274663 50.024 < 2e-16 ***
origin_hex909 1.4555470 0.0252826 57.571 < 2e-16 ***
origin_hex910 -0.4539771 0.0300237 -15.121 < 2e-16 ***
origin_hex911 0.8968683 0.0261143 34.344 < 2e-16 ***
origin_hex912 2.1406519 0.0250209 85.554 < 2e-16 ***
origin_hex915 2.6270542 0.0250007 105.079 < 2e-16 ***
origin_hex917 1.9661808 0.0255503 76.953 < 2e-16 ***
origin_hex918 -1.0599611 0.0437474 -24.229 < 2e-16 ***
origin_hex919 1.1445662 0.0262591 43.587 < 2e-16 ***
origin_hex928 0.2364953 0.0282634 8.368 < 2e-16 ***
origin_hex929 1.7652526 0.0250994 70.330 < 2e-16 ***
origin_hex930 2.2289033 0.0248665 89.635 < 2e-16 ***
origin_hex931 -0.3076142 0.0297157 -10.352 < 2e-16 ***
origin_hex932 -0.1228697 0.0301952 -4.069 4.72e-05 ***
origin_hex933 2.3050872 0.0252579 91.262 < 2e-16 ***
origin_hex934 -0.2532802 0.0299885 -8.446 < 2e-16 ***
origin_hex935 3.4593310 0.0248126 139.418 < 2e-16 ***
origin_hex938 -4.3774872 0.2146487 -20.394 < 2e-16 ***
origin_hex939 3.4268863 0.0249541 137.328 < 2e-16 ***
origin_hex940 -2.2772345 0.0652028 -34.925 < 2e-16 ***
origin_hex949 0.2512705 0.0276718 9.080 < 2e-16 ***
origin_hex950 2.1844199 0.0251430 86.880 < 2e-16 ***
origin_hex951 2.9644348 0.0248148 119.462 < 2e-16 ***
origin_hex952 0.1925868 0.0322895 5.964 2.46e-09 ***
origin_hex953 1.2153535 0.0263572 46.111 < 2e-16 ***
origin_hex954 -0.2990816 0.0296858 -10.075 < 2e-16 ***
origin_hex955 2.0271218 0.0252556 80.264 < 2e-16 ***
origin_hex956 0.5303766 0.0270905 19.578 < 2e-16 ***
origin_hex957 2.5339591 0.0252618 100.308 < 2e-16 ***
origin_hex959 -0.9664793 0.0542066 -17.830 < 2e-16 ***
origin_hex961 -1.2914520 0.0386726 -33.394 < 2e-16 ***
origin_hex962 4.0799461 0.0254129 160.547 < 2e-16 ***
origin_hex970 0.7785543 0.0258758 30.088 < 2e-16 ***
origin_hex971 2.1085031 0.0249427 84.534 < 2e-16 ***
origin_hex972 1.5743764 0.0251050 62.712 < 2e-16 ***
origin_hex974 1.4676487 0.0256828 57.145 < 2e-16 ***
origin_hex975 1.1767612 0.0261432 45.012 < 2e-16 ***
origin_hex976 -0.3260703 0.0297400 -10.964 < 2e-16 ***
origin_hex977 3.0513676 0.0248926 122.581 < 2e-16 ***
origin_hex978 2.2846010 0.0260040 87.856 < 2e-16 ***
origin_hex982 0.1495075 0.0284875 5.248 1.54e-07 ***
origin_hex983 4.4970374 0.0249349 180.351 < 2e-16 ***
origin_hex984 2.8111675 0.0269333 104.375 < 2e-16 ***
origin_hex991 0.5854982 0.0262300 22.322 < 2e-16 ***
origin_hex992 1.1385430 0.0255670 44.532 < 2e-16 ***
origin_hex993 0.8632560 0.0257015 33.588 < 2e-16 ***
origin_hex994 0.2468573 0.0269027 9.176 < 2e-16 ***
origin_hex995 1.8095176 0.0252546 71.651 < 2e-16 ***
origin_hex996 0.8935613 0.0257789 34.663 < 2e-16 ***
origin_hex997 -0.0620752 0.0383745 -1.618 0.105746
origin_hex998 2.9530337 0.0249230 118.486 < 2e-16 ***
origin_hex999 3.1343886 0.0253276 123.754 < 2e-16 ***
destination_hex1003 1.3172108 0.0158057 83.338 < 2e-16 ***
destination_hex1004 0.2079548 0.0162218 12.819 < 2e-16 ***
destination_hex1011 0.3169846 0.0195156 16.243 < 2e-16 ***
destination_hex1012 1.9171402 0.0165603 115.767 < 2e-16 ***
destination_hex1013 0.5506188 0.0172064 32.001 < 2e-16 ***
destination_hex1014 -1.1349626 0.0220730 -51.419 < 2e-16 ***
destination_hex1015 1.5404336 0.0160087 96.225 < 2e-16 ***
destination_hex1016 1.3402299 0.0159157 84.208 < 2e-16 ***
destination_hex1018 -0.5029292 0.0196054 -25.653 < 2e-16 ***
destination_hex1019 -0.0482940 0.0164554 -2.935 0.003337 **
destination_hex1023 -0.8579469 0.0202115 -42.448 < 2e-16 ***
destination_hex1024 -0.1823773 0.0167871 -10.864 < 2e-16 ***
destination_hex1025 -3.9664956 0.0664202 -59.718 < 2e-16 ***
destination_hex1033 0.8989300 0.0169004 53.190 < 2e-16 ***
destination_hex1034 1.5837647 0.0160959 98.396 < 2e-16 ***
destination_hex1035 1.3554043 0.0161697 83.824 < 2e-16 ***
destination_hex1036 1.7366393 0.0159241 109.057 < 2e-16 ***
destination_hex1037 0.3844110 0.0165621 23.210 < 2e-16 ***
destination_hex1043 0.6599528 0.0188049 35.095 < 2e-16 ***
destination_hex1045 -0.0705508 0.0165042 -4.275 1.91e-05 ***
destination_hex1046 0.5406780 0.0165168 32.735 < 2e-16 ***
destination_hex1053 1.6691200 0.0161681 103.236 < 2e-16 ***
destination_hex1054 1.3762195 0.0162234 84.829 < 2e-16 ***
destination_hex1055 0.3553220 0.0173904 20.432 < 2e-16 ***
destination_hex1056 -0.3179141 0.0189177 -16.805 < 2e-16 ***
destination_hex1064 -2.9308125 0.0884371 -33.140 < 2e-16 ***
destination_hex1066 1.0792850 0.0159771 67.552 < 2e-16 ***
destination_hex1067 0.9412921 0.0167716 56.124 < 2e-16 ***
destination_hex1074 -0.4907938 0.0205279 -23.909 < 2e-16 ***
destination_hex1075 1.2208454 0.0165885 73.596 < 2e-16 ***
destination_hex1076 0.5176698 0.0168495 30.723 < 2e-16 ***
destination_hex1077 -0.2116456 0.0184787 -11.453 < 2e-16 ***
destination_hex1079 0.6587363 0.0164929 39.941 < 2e-16 ***
destination_hex1085 -1.1246061 0.0582993 -19.290 < 2e-16 ***
destination_hex1087 -0.0039013 0.0166125 -0.235 0.814334
destination_hex1088 0.7278843 0.0163934 44.401 < 2e-16 ***
destination_hex109 0.4923252 0.0302066 16.299 < 2e-16 ***
destination_hex1094 -3.3707259 0.0509734 -66.127 < 2e-16 ***
destination_hex1095 0.2437758 0.0206516 11.804 < 2e-16 ***
destination_hex1096 1.3338063 0.0215655 61.849 < 2e-16 ***
destination_hex1097 1.3964626 0.0160338 87.095 < 2e-16 ***
destination_hex1098 -1.2180701 0.0265562 -45.868 < 2e-16 ***
destination_hex1099 0.0007190 0.0172372 0.042 0.966729
destination_hex110 -2.0266151 0.1020771 -19.854 < 2e-16 ***
destination_hex1105 2.0241651 0.0176428 114.731 < 2e-16 ***
destination_hex1106 -3.1201209 0.0862094 -36.192 < 2e-16 ***
destination_hex1107 0.0065874 0.0171668 0.384 0.701180
destination_hex1108 2.6253695 0.0156301 167.969 < 2e-16 ***
destination_hex1109 -1.4791006 0.0260284 -56.827 < 2e-16 ***
destination_hex111 2.3461319 0.0199082 117.847 < 2e-16 ***
destination_hex1116 0.4465740 0.0176835 25.254 < 2e-16 ***
destination_hex1117 1.0424255 0.0169314 61.568 < 2e-16 ***
destination_hex1118 -0.8042104 0.0234164 -34.344 < 2e-16 ***
destination_hex1119 -0.2195258 0.0185140 -11.857 < 2e-16 ***
destination_hex112 -1.1207427 0.0343267 -32.649 < 2e-16 ***
destination_hex1120 -0.7882050 0.0226765 -34.759 < 2e-16 ***
destination_hex1129 -0.6090635 0.0173178 -35.170 < 2e-16 ***
destination_hex1130 0.3173352 0.0164604 19.279 < 2e-16 ***
destination_hex1131 1.7720930 0.0163428 108.432 < 2e-16 ***
destination_hex1136 1.6852748 0.0161546 104.321 < 2e-16 ***
destination_hex1138 -0.4399415 0.0227667 -19.324 < 2e-16 ***
destination_hex1139 0.0753753 0.0169345 4.451 8.55e-06 ***
destination_hex1141 0.1618463 0.0171884 9.416 < 2e-16 ***
destination_hex1148 -0.9569830 0.0329855 -29.012 < 2e-16 ***
destination_hex1149 -0.7383973 0.0203063 -36.363 < 2e-16 ***
destination_hex1150 -0.2514302 0.0168286 -14.941 < 2e-16 ***
destination_hex1151 -0.5260823 0.0169011 -31.127 < 2e-16 ***
destination_hex1158 -0.4469547 0.0186631 -23.949 < 2e-16 ***
destination_hex1159 -0.0793832 0.0177345 -4.476 7.60e-06 ***
destination_hex1160 1.5012552 0.0159937 93.866 < 2e-16 ***
destination_hex1171 0.5421685 0.0165517 32.756 < 2e-16 ***
destination_hex1172 1.8767980 0.0157933 118.835 < 2e-16 ***
destination_hex1173 1.3122368 0.0162966 80.522 < 2e-16 ***
destination_hex1174 -1.0596826 0.0443186 -23.911 < 2e-16 ***
destination_hex1178 1.8795700 0.0158727 118.415 < 2e-16 ***
destination_hex1179 0.9862717 0.0162822 60.574 < 2e-16 ***
destination_hex1180 1.0094120 0.0162078 62.279 < 2e-16 ***
destination_hex1181 -0.0830573 0.0177945 -4.668 3.05e-06 ***
destination_hex1183 1.2530177 0.0161535 77.569 < 2e-16 ***
destination_hex1190 -0.9972057 0.0325319 -30.653 < 2e-16 ***
destination_hex1192 0.5208361 0.0164116 31.736 < 2e-16 ***
destination_hex1193 0.5307619 0.0164021 32.359 < 2e-16 ***
destination_hex1194 1.0630318 0.0165960 64.054 < 2e-16 ***
destination_hex1200 0.7514271 0.0169703 44.279 < 2e-16 ***
destination_hex1201 0.4040041 0.0170659 23.673 < 2e-16 ***
destination_hex1203 0.3316206 0.0173357 19.129 < 2e-16 ***
destination_hex1204 0.0324797 0.0177078 1.834 0.066624 .
destination_hex1211 -4.1449942 0.2779782 -14.911 < 2e-16 ***
destination_hex1214 -0.4077865 0.0176497 -23.104 < 2e-16 ***
destination_hex1215 0.0048988 0.0190203 0.258 0.796751
destination_hex1216 0.6367410 0.0184180 34.572 < 2e-16 ***
destination_hex1220 0.9694596 0.0165684 58.513 < 2e-16 ***
destination_hex1221 1.3319284 0.0160013 83.239 < 2e-16 ***
destination_hex1222 0.1039030 0.0197508 5.261 1.44e-07 ***
destination_hex1223 -0.2342446 0.0189730 -12.346 < 2e-16 ***
destination_hex1224 0.3160104 0.0173102 18.256 < 2e-16 ***
destination_hex1231 -1.8407455 0.0593230 -31.029 < 2e-16 ***
destination_hex1232 -0.3564051 0.0288571 -12.351 < 2e-16 ***
destination_hex1235 0.4781354 0.0165820 28.835 < 2e-16 ***
destination_hex1236 0.3572096 0.0175400 20.365 < 2e-16 ***
destination_hex1241 -0.5465714 0.0192637 -28.373 < 2e-16 ***
destination_hex1242 -0.0844833 0.0178221 -4.740 2.13e-06 ***
destination_hex1243 1.0599264 0.0162827 65.095 < 2e-16 ***
destination_hex1246 -0.0995321 0.0175885 -5.659 1.52e-08 ***
destination_hex1256 -0.7930401 0.0186627 -42.493 < 2e-16 ***
destination_hex1257 0.8535783 0.0166736 51.193 < 2e-16 ***
destination_hex1258 1.4559855 0.0163652 88.968 < 2e-16 ***
destination_hex1262 -0.4877317 0.0198755 -24.539 < 2e-16 ***
destination_hex1263 1.4875933 0.0158608 93.790 < 2e-16 ***
destination_hex1264 0.8941163 0.0171290 52.199 < 2e-16 ***
destination_hex1265 0.6505100 0.0172488 37.713 < 2e-16 ***
destination_hex1266 0.6966917 0.0168437 41.362 < 2e-16 ***
destination_hex1267 -0.7700419 0.0223204 -34.499 < 2e-16 ***
destination_hex1272 -4.3919586 0.1122205 -39.137 < 2e-16 ***
destination_hex1273 0.5332166 0.0170718 31.234 < 2e-16 ***
destination_hex1277 0.7372219 0.0161450 45.662 < 2e-16 ***
destination_hex1278 0.3975875 0.0167002 23.807 < 2e-16 ***
destination_hex128 2.3096004 0.0291022 79.362 < 2e-16 ***
destination_hex1283 2.0754089 0.0158419 131.008 < 2e-16 ***
destination_hex1284 1.5350397 0.0159534 96.220 < 2e-16 ***
destination_hex1285 1.2312035 0.0161125 76.413 < 2e-16 ***
destination_hex1286 0.3342341 0.0182323 18.332 < 2e-16 ***
destination_hex1289 -2.1228406 0.0425684 -49.869 < 2e-16 ***
destination_hex129 -2.6267368 0.1148684 -22.867 < 2e-16 ***
destination_hex1293 -3.5505997 0.0759551 -46.746 < 2e-16 ***
destination_hex1294 0.5546188 0.0176717 31.385 < 2e-16 ***
destination_hex1295 -1.8086447 0.0270727 -66.807 < 2e-16 ***
destination_hex1298 0.0662529 0.0167583 3.953 7.70e-05 ***
destination_hex1299 -0.3421591 0.0178784 -19.138 < 2e-16 ***
destination_hex130 0.4919173 0.0273925 17.958 < 2e-16 ***
destination_hex1304 0.9716094 0.0165467 58.719 < 2e-16 ***
destination_hex1305 1.0213193 0.0160442 63.657 < 2e-16 ***
destination_hex1307 -0.5687351 0.0247204 -23.007 < 2e-16 ***
destination_hex1308 0.6603625 0.0165399 39.925 < 2e-16 ***
destination_hex131 0.0886912 0.0295248 3.004 0.002665 **
destination_hex1310 -4.2544601 0.1896237 -22.436 < 2e-16 ***
destination_hex1316 -1.4306618 0.0221041 -64.724 < 2e-16 ***
destination_hex1317 -1.5676836 0.0202822 -77.293 < 2e-16 ***
destination_hex1318 -1.4384370 0.0220989 -65.091 < 2e-16 ***
destination_hex1319 1.2620996 0.0159223 79.266 < 2e-16 ***
destination_hex132 0.9104291 0.0224734 40.511 < 2e-16 ***
destination_hex1320 -0.7631132 0.0205042 -37.217 < 2e-16 ***
destination_hex1324 1.1453366 0.0219459 52.189 < 2e-16 ***
destination_hex1325 -0.8609091 0.0209582 -41.077 < 2e-16 ***
destination_hex1326 0.6158175 0.0164334 37.473 < 2e-16 ***
destination_hex1327 0.9148328 0.0163217 56.050 < 2e-16 ***
destination_hex1328 0.7732251 0.0167311 46.215 < 2e-16 ***
destination_hex1329 0.6168082 0.0176648 34.917 < 2e-16 ***
destination_hex133 0.4461823 0.0205380 21.725 < 2e-16 ***
destination_hex1330 1.8115970 0.0162717 111.334 < 2e-16 ***
destination_hex1331 -4.3491945 0.2586735 -16.813 < 2e-16 ***
destination_hex1333 -1.0403194 0.0223952 -46.453 < 2e-16 ***
destination_hex1334 -0.5981769 0.0202536 -29.534 < 2e-16 ***
destination_hex1335 1.2809716 0.0164298 77.966 < 2e-16 ***
destination_hex1336 -2.7496744 0.0579629 -47.439 < 2e-16 ***
destination_hex1337 -2.4034905 0.0331812 -72.435 < 2e-16 ***
destination_hex1338 -2.4312423 0.0307824 -78.982 < 2e-16 ***
destination_hex1339 1.0827466 0.0159519 67.876 < 2e-16 ***
destination_hex134 -0.4063735 0.0205640 -19.761 < 2e-16 ***
destination_hex1340 -0.2310439 0.0179772 -12.852 < 2e-16 ***
destination_hex1341 -3.7008716 0.0975009 -37.957 < 2e-16 ***
destination_hex1346 0.8511087 0.0170262 49.988 < 2e-16 ***
destination_hex1347 1.9046956 0.0159111 119.709 < 2e-16 ***
destination_hex1348 0.5810381 0.0167424 34.705 < 2e-16 ***
destination_hex1349 1.4113918 0.0163283 86.438 < 2e-16 ***
destination_hex1350 -0.1661958 0.0198790 -8.360 < 2e-16 ***
destination_hex1353 0.3438508 0.0169642 20.269 < 2e-16 ***
destination_hex1354 -0.6066943 0.0195453 -31.040 < 2e-16 ***
destination_hex1355 -0.4077465 0.0190088 -21.450 < 2e-16 ***
destination_hex1357 -1.1062484 0.0241794 -45.752 < 2e-16 ***
destination_hex1358 1.1424284 0.0159463 71.642 < 2e-16 ***
destination_hex1359 -0.2082661 0.0168358 -12.370 < 2e-16 ***
destination_hex1360 -0.5340415 0.0171492 -31.141 < 2e-16 ***
destination_hex1361 -0.1536716 0.0178099 -8.628 < 2e-16 ***
destination_hex1362 -1.8613175 0.0329464 -56.495 < 2e-16 ***
destination_hex1368 -0.0750075 0.0178327 -4.206 2.60e-05 ***
destination_hex1369 0.0322172 0.0176495 1.825 0.067942 .
destination_hex1370 1.5752948 0.0158967 99.096 < 2e-16 ***
destination_hex1371 0.5777732 0.0172313 33.530 < 2e-16 ***
destination_hex1372 0.5585805 0.0169595 32.936 < 2e-16 ***
destination_hex1373 -2.4097101 0.0365500 -65.929 < 2e-16 ***
destination_hex1374 -1.1510174 0.0230486 -49.939 < 2e-16 ***
destination_hex1375 1.0311369 0.0171678 60.062 < 2e-16 ***
destination_hex1376 -0.8813700 0.0229204 -38.453 < 2e-16 ***
destination_hex1379 -3.7274158 0.0651430 -57.219 < 2e-16 ***
destination_hex1380 1.8567513 0.0157250 118.076 < 2e-16 ***
destination_hex1381 1.9069058 0.0156963 121.487 < 2e-16 ***
destination_hex1382 1.2772531 0.0161355 79.158 < 2e-16 ***
destination_hex1383 -1.5826361 0.0249528 -63.425 < 2e-16 ***
destination_hex1388 0.6808945 0.0167080 40.753 < 2e-16 ***
destination_hex1389 0.3883928 0.0170566 22.771 < 2e-16 ***
destination_hex1390 0.6514572 0.0168165 38.739 < 2e-16 ***
destination_hex1391 1.2437319 0.0162352 76.607 < 2e-16 ***
destination_hex1392 0.6098080 0.0197747 30.838 < 2e-16 ***
destination_hex1393 -0.1554342 0.0176863 -8.788 < 2e-16 ***
destination_hex1394 0.4002995 0.0166796 23.999 < 2e-16 ***
destination_hex1395 0.1843459 0.0169928 10.848 < 2e-16 ***
destination_hex1396 0.9925907 0.0163507 60.706 < 2e-16 ***
destination_hex1397 -0.3458499 0.0172940 -19.998 < 2e-16 ***
destination_hex1398 -0.5031663 0.0207750 -24.220 < 2e-16 ***
destination_hex1400 -1.1258142 0.0191103 -58.911 < 2e-16 ***
destination_hex1401 0.8987602 0.0158580 56.675 < 2e-16 ***
destination_hex1402 0.1470833 0.0164237 8.956 < 2e-16 ***
destination_hex1404 -0.0846353 0.0268587 -3.151 0.001626 **
destination_hex1410 1.5845539 0.0159478 99.359 < 2e-16 ***
destination_hex1411 0.7976796 0.0169214 47.140 < 2e-16 ***
destination_hex1412 1.3401547 0.0160068 83.724 < 2e-16 ***
destination_hex1413 0.8950656 0.0163818 54.638 < 2e-16 ***
destination_hex1414 0.2057050 0.0165770 12.409 < 2e-16 ***
destination_hex1415 0.8160827 0.0163913 49.788 < 2e-16 ***
destination_hex1416 0.1126473 0.0172556 6.528 6.66e-11 ***
destination_hex1417 0.3495037 0.0164919 21.192 < 2e-16 ***
destination_hex1418 0.3458073 0.0165368 20.911 < 2e-16 ***
destination_hex1419 -0.0844568 0.0173016 -4.881 1.05e-06 ***
destination_hex1422 -0.1760185 0.0167114 -10.533 < 2e-16 ***
destination_hex1423 0.3911444 0.0163613 23.907 < 2e-16 ***
destination_hex1430 1.1467161 0.0162369 70.624 < 2e-16 ***
destination_hex1431 1.7740679 0.0158887 111.656 < 2e-16 ***
destination_hex1432 1.2815283 0.0160051 80.070 < 2e-16 ***
destination_hex1433 0.2781011 0.0180232 15.430 < 2e-16 ***
destination_hex1434 1.3466190 0.0160257 84.029 < 2e-16 ***
destination_hex1435 0.8489885 0.0161745 52.489 < 2e-16 ***
destination_hex1436 -0.2861292 0.0187810 -15.235 < 2e-16 ***
destination_hex1437 0.2045693 0.0167367 12.223 < 2e-16 ***
destination_hex1438 0.7464645 0.0160491 46.511 < 2e-16 ***
destination_hex1439 1.5870021 0.0158647 100.033 < 2e-16 ***
destination_hex1440 0.8102889 0.0166533 48.656 < 2e-16 ***
destination_hex1442 -1.9638990 0.0226509 -86.703 < 2e-16 ***
destination_hex1443 -0.5394550 0.0166484 -32.403 < 2e-16 ***
destination_hex1444 0.8217186 0.0166272 49.420 < 2e-16 ***
destination_hex1452 1.7479747 0.0158162 110.518 < 2e-16 ***
destination_hex1453 1.2291648 0.0162454 75.662 < 2e-16 ***
destination_hex1454 0.1213728 0.0190675 6.365 1.95e-10 ***
destination_hex1455 0.7297446 0.0169800 42.977 < 2e-16 ***
destination_hex1456 0.7172079 0.0165147 43.428 < 2e-16 ***
destination_hex1457 1.6146279 0.0161121 100.212 < 2e-16 ***
destination_hex1458 2.2748814 0.0156919 144.972 < 2e-16 ***
destination_hex1459 -0.5542605 0.0174632 -31.739 < 2e-16 ***
destination_hex1460 0.7738106 0.0160827 48.114 < 2e-16 ***
destination_hex1461 0.5323020 0.0168120 31.662 < 2e-16 ***
destination_hex1464 -0.9770407 0.0171080 -57.110 < 2e-16 ***
destination_hex1465 -1.2053545 0.0187175 -64.397 < 2e-16 ***
destination_hex1472 0.7936633 0.0170015 46.682 < 2e-16 ***
destination_hex1473 1.7720267 0.0159011 111.440 < 2e-16 ***
destination_hex1474 1.5294957 0.0158458 96.524 < 2e-16 ***
destination_hex1475 1.3939067 0.0160073 87.079 < 2e-16 ***
destination_hex1476 0.3142513 0.0170128 18.471 < 2e-16 ***
destination_hex1477 2.1073631 0.0156748 134.443 < 2e-16 ***
destination_hex1478 0.4108062 0.0163565 25.116 < 2e-16 ***
destination_hex1479 -0.2741396 0.0171661 -15.970 < 2e-16 ***
destination_hex1480 2.0199102 0.0156863 128.769 < 2e-16 ***
destination_hex1481 0.4370370 0.0165478 26.411 < 2e-16 ***
destination_hex1482 1.4534794 0.0162142 89.642 < 2e-16 ***
destination_hex1485 -1.5602686 0.0198968 -78.418 < 2e-16 ***
destination_hex1494 1.4215457 0.0160454 88.595 < 2e-16 ***
destination_hex1495 0.7064543 0.0165481 42.691 < 2e-16 ***
destination_hex1496 1.4308756 0.0158932 90.031 < 2e-16 ***
destination_hex1497 0.3530622 0.0170619 20.693 < 2e-16 ***
destination_hex1498 0.5566127 0.0166389 33.452 < 2e-16 ***
destination_hex1499 0.5390478 0.0161575 33.362 < 2e-16 ***
destination_hex150 0.6605642 0.0383715 17.215 < 2e-16 ***
destination_hex1500 0.4436409 0.0176032 25.202 < 2e-16 ***
destination_hex1501 1.0103492 0.0159720 63.258 < 2e-16 ***
destination_hex1502 0.8385124 0.0160765 52.158 < 2e-16 ***
destination_hex1506 -7.0220038 0.0649873 -108.052 < 2e-16 ***
destination_hex151 0.5506370 0.0268010 20.545 < 2e-16 ***
destination_hex1515 0.4502354 0.0206636 21.789 < 2e-16 ***
destination_hex1516 1.1842305 0.0159079 74.443 < 2e-16 ***
destination_hex1517 0.7235802 0.0167481 43.204 < 2e-16 ***
destination_hex1518 -0.0866060 0.0173279 -4.998 5.79e-07 ***
destination_hex1519 -0.1475244 0.0175424 -8.410 < 2e-16 ***
destination_hex152 1.9295719 0.0217189 88.843 < 2e-16 ***
destination_hex1520 0.0228332 0.0168922 1.352 0.176472
destination_hex1521 -0.0298889 0.0171403 -1.744 0.081197 .
destination_hex1522 0.7726082 0.0162101 47.662 < 2e-16 ***
destination_hex1523 1.6468497 0.0161004 102.286 < 2e-16 ***
destination_hex1524 -0.3698268 0.0192662 -19.196 < 2e-16 ***
destination_hex1527 -3.1200256 0.0325270 -95.921 < 2e-16 ***
destination_hex153 1.1280482 0.0214353 52.626 < 2e-16 ***
destination_hex1535 0.4905607 0.0581072 8.442 < 2e-16 ***
destination_hex1536 -0.4818132 0.0265804 -18.127 < 2e-16 ***
destination_hex1537 0.9716529 0.0165146 58.836 < 2e-16 ***
destination_hex1538 0.8881344 0.0162688 54.591 < 2e-16 ***
destination_hex1539 0.9668325 0.0161066 60.027 < 2e-16 ***
destination_hex154 -0.6679268 0.0311796 -21.422 < 2e-16 ***
destination_hex1540 0.2270522 0.0166072 13.672 < 2e-16 ***
destination_hex1541 0.2046667 0.0170539 12.001 < 2e-16 ***
destination_hex1542 -0.0442726 0.0181482 -2.440 0.014708 *
destination_hex1543 -0.4373265 0.0300742 -14.542 < 2e-16 ***
destination_hex1544 -0.4166834 0.0178899 -23.292 < 2e-16 ***
destination_hex1547 -0.7241768 0.0214138 -33.818 < 2e-16 ***
destination_hex155 -0.1907460 0.0237418 -8.034 9.42e-16 ***
destination_hex1556 0.0250048 0.0631027 0.396 0.691917
destination_hex1557 -0.1674141 0.0220482 -7.593 3.12e-14 ***
destination_hex1558 0.7474158 0.0197707 37.804 < 2e-16 ***
destination_hex1559 1.4431255 0.0159347 90.565 < 2e-16 ***
destination_hex156 -0.3752911 0.0253983 -14.776 < 2e-16 ***
destination_hex1560 1.4644068 0.0159161 92.008 < 2e-16 ***
destination_hex1561 0.6070434 0.0167530 36.235 < 2e-16 ***
destination_hex1562 -1.5901277 0.0227381 -69.932 < 2e-16 ***
destination_hex1563 -0.6077636 0.0179191 -33.917 < 2e-16 ***
destination_hex1564 -0.1483990 0.0174662 -8.496 < 2e-16 ***
destination_hex1565 0.3497902 0.0166525 21.005 < 2e-16 ***
destination_hex1566 -1.4678676 0.0224931 -65.258 < 2e-16 ***
destination_hex1567 -1.1823886 0.0232173 -50.927 < 2e-16 ***
destination_hex1568 -0.4540921 0.0196103 -23.156 < 2e-16 ***
destination_hex1578 -0.4969661 0.1017251 -4.885 1.03e-06 ***
destination_hex1580 -1.4035292 0.0282728 -49.642 < 2e-16 ***
destination_hex1581 1.0775712 0.0161468 66.736 < 2e-16 ***
destination_hex1582 1.0566951 0.0159578 66.218 < 2e-16 ***
destination_hex1583 -1.7843537 0.0253863 -70.288 < 2e-16 ***
destination_hex1584 -0.6179766 0.0195667 -31.583 < 2e-16 ***
destination_hex1585 0.2628045 0.0171992 15.280 < 2e-16 ***
destination_hex1586 0.8381884 0.0162858 51.467 < 2e-16 ***
destination_hex1589 -1.6126929 0.0265913 -60.647 < 2e-16 ***
destination_hex1590 -0.4580054 0.0203058 -22.555 < 2e-16 ***
destination_hex1600 0.2810439 0.0213049 13.191 < 2e-16 ***
destination_hex1601 -0.2920727 0.0170338 -17.147 < 2e-16 ***
destination_hex1602 0.6225098 0.0167720 37.116 < 2e-16 ***
destination_hex1603 1.3145488 0.0159646 82.341 < 2e-16 ***
destination_hex1604 -0.6647538 0.0185144 -35.905 < 2e-16 ***
destination_hex1605 0.0932577 0.0164763 5.660 1.51e-08 ***
destination_hex1606 -0.1856474 0.0203882 -9.106 < 2e-16 ***
destination_hex1607 0.8702813 0.0160452 54.239 < 2e-16 ***
destination_hex1608 0.1831310 0.0166653 10.989 < 2e-16 ***
destination_hex1609 0.6963191 0.0163070 42.701 < 2e-16 ***
destination_hex1610 -1.2822906 0.0305611 -41.958 < 2e-16 ***
destination_hex1622 0.8918411 0.0194426 45.871 < 2e-16 ***
destination_hex1623 1.0316759 0.0160384 64.325 < 2e-16 ***
destination_hex1624 1.4901815 0.0159376 93.501 < 2e-16 ***
destination_hex1625 0.7038204 0.0164355 42.823 < 2e-16 ***
destination_hex1626 2.3900934 0.0156481 152.740 < 2e-16 ***
destination_hex1627 -0.6336066 0.0177568 -35.683 < 2e-16 ***
destination_hex1628 1.5578910 0.0158697 98.168 < 2e-16 ***
destination_hex1629 -1.5770244 0.0208679 -75.572 < 2e-16 ***
destination_hex1630 -1.0968108 0.0192021 -57.119 < 2e-16 ***
destination_hex1631 -1.5439003 0.0243205 -63.481 < 2e-16 ***
destination_hex1642 -2.0351397 0.0356375 -57.107 < 2e-16 ***
destination_hex1643 0.5348126 0.0165082 32.397 < 2e-16 ***
destination_hex1644 0.5806086 0.0173866 33.394 < 2e-16 ***
destination_hex1645 0.4993657 0.0166526 29.987 < 2e-16 ***
destination_hex1646 0.7965789 0.0172447 46.193 < 2e-16 ***
destination_hex1647 -0.0802431 0.0165867 -4.838 1.31e-06 ***
destination_hex1648 0.0148274 0.0164891 0.899 0.368532
destination_hex1649 0.7697347 0.0160145 48.065 < 2e-16 ***
destination_hex1650 -0.2190944 0.0171993 -12.739 < 2e-16 ***
destination_hex1664 -4.4764743 0.1173368 -38.151 < 2e-16 ***
destination_hex1665 1.1748420 0.0159783 73.527 < 2e-16 ***
destination_hex1666 1.2451956 0.0159779 77.932 < 2e-16 ***
destination_hex1667 0.0810286 0.0220772 3.670 0.000242 ***
destination_hex1668 0.0706859 0.0168354 4.199 2.69e-05 ***
destination_hex1670 0.4350216 0.0161225 26.982 < 2e-16 ***
destination_hex1671 -0.0268345 0.0186580 -1.438 0.150370
destination_hex1672 -0.8572326 0.0193597 -44.279 < 2e-16 ***
destination_hex1684 0.5775331 0.0180930 31.920 < 2e-16 ***
destination_hex1685 -0.1508387 0.0176974 -8.523 < 2e-16 ***
destination_hex1686 0.5992865 0.0164690 36.389 < 2e-16 ***
destination_hex1687 0.7925077 0.0168537 47.023 < 2e-16 ***
destination_hex1688 0.1222121 0.0168232 7.265 3.74e-13 ***
destination_hex1689 -0.6440417 0.0181996 -35.388 < 2e-16 ***
destination_hex1690 -1.5135223 0.0198925 -76.085 < 2e-16 ***
destination_hex1691 0.5464886 0.0161083 33.926 < 2e-16 ***
destination_hex1692 -1.2472021 0.0205497 -60.692 < 2e-16 ***
destination_hex1706 0.4971716 0.0172169 28.877 < 2e-16 ***
destination_hex1707 -0.3617671 0.0174007 -20.790 < 2e-16 ***
destination_hex1708 0.3529779 0.0166322 21.223 < 2e-16 ***
destination_hex1709 0.9966738 0.0161283 61.797 < 2e-16 ***
destination_hex1710 0.8003842 0.0162596 49.225 < 2e-16 ***
destination_hex1711 1.4029498 0.0158600 88.458 < 2e-16 ***
destination_hex1712 0.4774259 0.0160555 29.736 < 2e-16 ***
destination_hex1713 -1.7810039 0.0216325 -82.330 < 2e-16 ***
destination_hex1714 -0.3670550 0.0174551 -21.029 < 2e-16 ***
destination_hex172 -0.5408365 0.0480496 -11.256 < 2e-16 ***
destination_hex1727 0.9756834 0.0163668 59.613 < 2e-16 ***
destination_hex1728 0.9523655 0.0160913 59.185 < 2e-16 ***
destination_hex1729 1.0609071 0.0160234 66.210 < 2e-16 ***
destination_hex1730 -0.3120655 0.0177173 -17.614 < 2e-16 ***
destination_hex1731 0.5229295 0.0162900 32.101 < 2e-16 ***
destination_hex1732 0.3560925 0.0161291 22.078 < 2e-16 ***
destination_hex1733 -0.7368215 0.0173966 -42.354 < 2e-16 ***
destination_hex1734 0.1895685 0.0162020 11.700 < 2e-16 ***
destination_hex1735 -0.8045707 0.0208655 -38.560 < 2e-16 ***
destination_hex174 0.7129797 0.0226440 31.486 < 2e-16 ***
destination_hex1748 -0.2527951 0.0177735 -14.223 < 2e-16 ***
destination_hex1749 1.1209143 0.0159559 70.251 < 2e-16 ***
destination_hex175 0.6809935 0.0195127 34.900 < 2e-16 ***
destination_hex1750 1.0156969 0.0160299 63.363 < 2e-16 ***
destination_hex1751 0.5911491 0.0166229 35.562 < 2e-16 ***
destination_hex1753 0.7098618 0.0161013 44.087 < 2e-16 ***
destination_hex1754 1.7868529 0.0156940 113.856 < 2e-16 ***
destination_hex1755 1.0068866 0.0158624 63.476 < 2e-16 ***
destination_hex1756 -0.1435823 0.0164309 -8.739 < 2e-16 ***
destination_hex1757 -2.5538701 0.0268390 -95.155 < 2e-16 ***
destination_hex176 -1.3694811 0.0353861 -38.701 < 2e-16 ***
destination_hex1769 0.4452735 0.0167189 26.633 < 2e-16 ***
destination_hex1770 0.4669318 0.0171257 27.265 < 2e-16 ***
destination_hex1771 1.0668358 0.0162321 65.724 < 2e-16 ***
destination_hex1772 2.3661934 0.0169648 139.476 < 2e-16 ***
destination_hex1774 -0.1053481 0.0169168 -6.227 4.74e-10 ***
destination_hex1775 -0.7451782 0.0173546 -42.938 < 2e-16 ***
destination_hex1776 1.5987498 0.0157191 101.708 < 2e-16 ***
destination_hex1777 -0.4782124 0.0171121 -27.946 < 2e-16 ***
destination_hex1778 -1.2066008 0.0212198 -56.862 < 2e-16 ***
destination_hex1790 1.2399110 0.0162296 76.398 < 2e-16 ***
destination_hex1791 0.5604823 0.0165021 33.964 < 2e-16 ***
destination_hex1792 0.6315823 0.0169980 37.156 < 2e-16 ***
destination_hex1793 0.6957636 0.0164542 42.285 < 2e-16 ***
destination_hex1794 2.4509222 0.0171491 142.918 < 2e-16 ***
destination_hex1795 -1.7311157 0.0264250 -65.511 < 2e-16 ***
destination_hex1796 0.3227680 0.0163753 19.711 < 2e-16 ***
destination_hex1797 0.0996416 0.0163915 6.079 1.21e-09 ***
destination_hex1798 0.2068659 0.0163115 12.682 < 2e-16 ***
destination_hex1799 -1.3667000 0.0186713 -73.198 < 2e-16 ***
destination_hex1800 -2.3431926 0.0527698 -44.404 < 2e-16 ***
destination_hex1811 0.3126507 0.0171666 18.213 < 2e-16 ***
destination_hex1812 1.5727323 0.0158252 99.382 < 2e-16 ***
destination_hex1813 1.7195803 0.0158048 108.801 < 2e-16 ***
destination_hex1817 -1.2269217 0.0194413 -63.109 < 2e-16 ***
destination_hex1818 -0.2946903 0.0166101 -17.742 < 2e-16 ***
destination_hex1819 1.5563467 0.0157609 98.747 < 2e-16 ***
destination_hex1820 -3.6516664 0.0446494 -81.785 < 2e-16 ***
destination_hex1832 1.5528563 0.0160084 97.002 < 2e-16 ***
destination_hex1833 0.2007202 0.0169305 11.856 < 2e-16 ***
destination_hex1834 0.0640055 0.0168499 3.799 0.000146 ***
destination_hex1835 0.2260435 0.0171395 13.188 < 2e-16 ***
destination_hex1837 0.0975939 0.0206673 4.722 2.33e-06 ***
destination_hex1839 -1.1033983 0.0192331 -57.370 < 2e-16 ***
destination_hex1840 1.5243295 0.0158052 96.445 < 2e-16 ***
destination_hex1841 -2.0235074 0.0272402 -74.284 < 2e-16 ***
destination_hex1842 0.0940814 0.0223495 4.210 2.56e-05 ***
destination_hex1853 0.5362167 0.0165111 32.476 < 2e-16 ***
destination_hex1854 0.8030999 0.0163212 49.206 < 2e-16 ***
destination_hex1855 1.1204556 0.0161262 69.481 < 2e-16 ***
destination_hex1858 1.0951615 0.0176515 62.043 < 2e-16 ***
destination_hex1860 -0.2430096 0.0236967 -10.255 < 2e-16 ***
destination_hex1861 -0.4877306 0.0167185 -29.173 < 2e-16 ***
destination_hex1874 0.2900860 0.0180358 16.084 < 2e-16 ***
destination_hex1875 -1.7487119 0.0250673 -69.761 < 2e-16 ***
destination_hex1876 -0.3795640 0.0267452 -14.192 < 2e-16 ***
destination_hex1877 0.8976684 0.0162191 55.346 < 2e-16 ***
destination_hex1880 0.2470164 0.0208642 11.839 < 2e-16 ***
destination_hex1882 0.0086345 0.0167216 0.516 0.605599
destination_hex1883 -0.9368155 0.0246650 -37.982 < 2e-16 ***
destination_hex1895 0.8472301 0.0164018 51.655 < 2e-16 ***
destination_hex1896 -0.1125159 0.0173135 -6.499 8.10e-11 ***
destination_hex1897 -0.8703667 0.0193724 -44.928 < 2e-16 ***
destination_hex1898 -1.1634388 0.0283988 -40.968 < 2e-16 ***
destination_hex1901 -0.3766431 0.0260085 -14.482 < 2e-16 ***
destination_hex1903 -1.6360101 0.0230665 -70.926 < 2e-16 ***
destination_hex1917 -0.1180916 0.0177545 -6.651 2.90e-11 ***
destination_hex1918 1.3912286 0.0166635 83.490 < 2e-16 ***
destination_hex1919 1.0854224 0.0161357 67.268 < 2e-16 ***
destination_hex1922 0.8895111 0.0185394 47.980 < 2e-16 ***
destination_hex1924 -2.0607285 0.0242839 -84.860 < 2e-16 ***
destination_hex1937 0.2521704 0.0172313 14.634 < 2e-16 ***
destination_hex1938 1.0695114 0.0160931 66.458 < 2e-16 ***
destination_hex1939 0.1185838 0.0174456 6.797 1.07e-11 ***
destination_hex1942 -0.5722213 0.0252838 -22.632 < 2e-16 ***
destination_hex195 -1.4349487 0.0344125 -41.698 < 2e-16 ***
destination_hex1959 -0.0307889 0.0179817 -1.712 0.086854 .
destination_hex196 0.5791457 0.0190969 30.327 < 2e-16 ***
destination_hex1960 2.3011739 0.0156654 146.895 < 2e-16 ***
destination_hex1961 -0.2789473 0.0184034 -15.157 < 2e-16 ***
destination_hex1962 0.2445529 0.0166655 14.674 < 2e-16 ***
destination_hex1964 1.1428098 0.0191654 59.629 < 2e-16 ***
destination_hex197 -2.0987424 0.0882229 -23.789 < 2e-16 ***
destination_hex1979 0.2497432 0.0176198 14.174 < 2e-16 ***
destination_hex1980 -0.0219652 0.0168305 -1.305 0.191863
destination_hex1981 -0.1485405 0.0170992 -8.687 < 2e-16 ***
destination_hex1982 0.7843751 0.0170188 46.089 < 2e-16 ***
destination_hex1983 0.2510214 0.0166623 15.065 < 2e-16 ***
destination_hex1984 0.5010745 0.0166855 30.031 < 2e-16 ***
destination_hex1985 0.6243830 0.0164746 37.900 < 2e-16 ***
destination_hex2001 0.4009348 0.0168029 23.861 < 2e-16 ***
destination_hex2002 0.4934604 0.0162402 30.385 < 2e-16 ***
destination_hex2003 1.1118365 0.0160635 69.215 < 2e-16 ***
destination_hex2004 1.2429716 0.0160421 77.482 < 2e-16 ***
destination_hex2005 0.4238011 0.0166957 25.384 < 2e-16 ***
destination_hex2006 1.4122936 0.0161208 87.607 < 2e-16 ***
destination_hex2007 -2.6984091 0.0320756 -84.127 < 2e-16 ***
destination_hex2022 0.8959276 0.0167289 53.556 < 2e-16 ***
destination_hex2023 0.7952053 0.0161716 49.173 < 2e-16 ***
destination_hex2024 1.3098088 0.0159548 82.095 < 2e-16 ***
destination_hex2025 0.0261678 0.0167718 1.560 0.118707
destination_hex2026 -0.6027883 0.0191301 -31.510 < 2e-16 ***
destination_hex2027 1.1713962 0.0161340 72.604 < 2e-16 ***
destination_hex2043 -0.5762089 0.0188999 -30.487 < 2e-16 ***
destination_hex2044 0.2853048 0.0166477 17.138 < 2e-16 ***
destination_hex2045 0.1999790 0.0195606 10.224 < 2e-16 ***
destination_hex2046 1.2797591 0.0158775 80.602 < 2e-16 ***
destination_hex2047 -0.5640520 0.0178986 -31.514 < 2e-16 ***
destination_hex2048 -0.2362411 0.0175515 -13.460 < 2e-16 ***
destination_hex2049 -4.6843126 0.0314986 -148.715 < 2e-16 ***
destination_hex2064 0.3432759 0.0170759 20.103 < 2e-16 ***
destination_hex2065 0.0835347 0.0172731 4.836 1.32e-06 ***
destination_hex2066 -1.8628332 0.0348786 -53.409 < 2e-16 ***
destination_hex2067 2.7230348 0.0156366 174.145 < 2e-16 ***
destination_hex2068 -0.3637224 0.0198710 -18.304 < 2e-16 ***
destination_hex2069 -0.0892169 0.0174835 -5.103 3.34e-07 ***
destination_hex2085 -0.1173690 0.0173690 -6.757 1.41e-11 ***
destination_hex2086 1.7717945 0.0159094 111.368 < 2e-16 ***
destination_hex2087 1.5296289 0.0159784 95.731 < 2e-16 ***
destination_hex2088 0.3805124 0.0164722 23.100 < 2e-16 ***
destination_hex2089 -0.5932443 0.0179423 -33.064 < 2e-16 ***
destination_hex2090 2.3937402 0.0156973 152.494 < 2e-16 ***
destination_hex2091 -3.7122970 0.0636800 -58.296 < 2e-16 ***
destination_hex2105 0.1308955 0.0771568 1.696 0.089793 .
destination_hex2106 -0.9523853 0.0216252 -44.040 < 2e-16 ***
destination_hex2107 1.6645267 0.0159251 104.522 < 2e-16 ***
destination_hex2108 1.4554176 0.0161538 90.098 < 2e-16 ***
destination_hex2109 -0.2301655 0.0167575 -13.735 < 2e-16 ***
destination_hex2110 -0.7869864 0.0194740 -40.412 < 2e-16 ***
destination_hex2111 -2.4609555 0.0364026 -67.604 < 2e-16 ***
destination_hex2128 0.3235491 0.0180022 17.973 < 2e-16 ***
destination_hex2129 0.5145404 0.0183314 28.069 < 2e-16 ***
destination_hex2130 -0.1040681 0.0165688 -6.281 3.36e-10 ***
destination_hex2131 0.0357233 0.0171140 2.087 0.036855 *
destination_hex2132 0.0206727 0.0171209 1.207 0.227259
destination_hex2148 -0.2870025 0.0209472 -13.701 < 2e-16 ***
destination_hex2149 -0.2236372 0.0188318 -11.876 < 2e-16 ***
destination_hex215 0.6689809 0.0318270 21.019 < 2e-16 ***
destination_hex2150 -1.0768701 0.0175726 -61.281 < 2e-16 ***
destination_hex2151 1.8117804 0.0157895 114.746 < 2e-16 ***
destination_hex2152 0.8451418 0.0163144 51.803 < 2e-16 ***
destination_hex2153 -0.7952251 0.0191061 -41.621 < 2e-16 ***
destination_hex216 0.8798034 0.0226903 38.774 < 2e-16 ***
destination_hex217 0.6150031 0.0193103 31.848 < 2e-16 ***
destination_hex2171 1.2209516 0.0163750 74.562 < 2e-16 ***
destination_hex2172 -0.3590274 0.0191372 -18.761 < 2e-16 ***
destination_hex2173 -0.0078277 0.0171470 -0.457 0.648026
destination_hex2174 0.3368043 0.0169395 19.883 < 2e-16 ***
destination_hex2191 1.4139761 0.0171505 82.445 < 2e-16 ***
destination_hex2192 -0.0480420 0.0187660 -2.560 0.010466 *
destination_hex2193 0.6902849 0.0166366 41.492 < 2e-16 ***
destination_hex2194 0.4697051 0.0165438 28.392 < 2e-16 ***
destination_hex2195 -0.9308483 0.0373220 -24.941 < 2e-16 ***
destination_hex2212 1.0309843 0.0207960 49.576 < 2e-16 ***
destination_hex2213 0.9507879 0.0175211 54.265 < 2e-16 ***
destination_hex2214 2.1984962 0.0170552 128.905 < 2e-16 ***
destination_hex2215 0.1764155 0.0181039 9.745 < 2e-16 ***
destination_hex2216 1.0281764 0.0165740 62.035 < 2e-16 ***
destination_hex2233 1.5155170 0.0183560 82.563 < 2e-16 ***
destination_hex2234 2.2381155 0.0176543 126.775 < 2e-16 ***
destination_hex2235 0.5377217 0.0181513 29.624 < 2e-16 ***
destination_hex2236 -0.7714179 0.0205290 -37.577 < 2e-16 ***
destination_hex2237 1.1495247 0.0194819 59.005 < 2e-16 ***
destination_hex2256 0.8963630 0.0204461 43.840 < 2e-16 ***
destination_hex2257 -1.5303811 0.0303080 -50.494 < 2e-16 ***
destination_hex2258 0.6171034 0.0171577 35.967 < 2e-16 ***
destination_hex2259 1.6954966 0.0185852 91.229 < 2e-16 ***
destination_hex2277 -0.3305153 0.0291814 -11.326 < 2e-16 ***
destination_hex2278 -0.1631750 0.0221344 -7.372 1.68e-13 ***
destination_hex2279 0.8434823 0.0171330 49.231 < 2e-16 ***
destination_hex2280 -0.6963623 0.0355915 -19.565 < 2e-16 ***
destination_hex2297 -0.2339732 0.0223235 -10.481 < 2e-16 ***
destination_hex23 1.1887862 0.0492856 24.120 < 2e-16 ***
destination_hex2300 -0.1185496 0.0251279 -4.718 2.38e-06 ***
destination_hex2301 0.4058047 0.0183855 22.072 < 2e-16 ***
destination_hex2318 1.7714138 0.0164360 107.776 < 2e-16 ***
destination_hex2319 1.7829596 0.0163606 108.979 < 2e-16 ***
destination_hex2322 0.6754166 0.0181146 37.286 < 2e-16 ***
destination_hex2337 1.3957151 0.0237481 58.772 < 2e-16 ***
destination_hex2341 2.1360621 0.0162421 131.514 < 2e-16 ***
destination_hex2343 -0.0817071 0.0200175 -4.082 4.47e-05 ***
destination_hex2361 0.5990055 0.0179096 33.446 < 2e-16 ***
destination_hex2364 -1.0770680 0.0334147 -32.233 < 2e-16 ***
destination_hex237 -1.5378793 0.0330742 -46.498 < 2e-16 ***
destination_hex2379 0.1087527 0.0314172 3.462 0.000537 ***
destination_hex238 -0.5626943 0.0220277 -25.545 < 2e-16 ***
destination_hex2384 1.8268849 0.0168396 108.487 < 2e-16 ***
destination_hex239 -0.3392966 0.0338512 -10.023 < 2e-16 ***
destination_hex2405 2.4455714 0.0162994 150.040 < 2e-16 ***
destination_hex2406 -0.6056258 0.0285459 -21.216 < 2e-16 ***
destination_hex2426 1.8731381 0.0190866 98.139 < 2e-16 ***
destination_hex2427 2.1078528 0.0169454 124.391 < 2e-16 ***
destination_hex2505 1.7572989 0.0245537 71.570 < 2e-16 ***
destination_hex257 1.4702968 0.0220168 66.781 < 2e-16 ***
destination_hex258 -0.4275818 0.0250750 -17.052 < 2e-16 ***
destination_hex259 0.8524340 0.0199042 42.827 < 2e-16 ***
destination_hex278 1.6734308 0.0222928 75.066 < 2e-16 ***
destination_hex279 0.0811828 0.0203514 3.989 6.63e-05 ***
destination_hex280 0.7236260 0.0199812 36.215 < 2e-16 ***
destination_hex298 -3.0506335 0.1337826 -22.803 < 2e-16 ***
destination_hex299 0.1874716 0.0228622 8.200 2.40e-16 ***
destination_hex300 0.0553504 0.0229978 2.407 0.016094 *
destination_hex320 1.5406277 0.0209157 73.659 < 2e-16 ***
destination_hex321 -0.1757215 0.0279125 -6.295 3.07e-10 ***
destination_hex322 0.7552687 0.0196158 38.503 < 2e-16 ***
destination_hex340 2.3810380 0.0193730 122.905 < 2e-16 ***
destination_hex341 0.9842925 0.0199303 49.387 < 2e-16 ***
destination_hex342 0.8913045 0.0186349 47.830 < 2e-16 ***
destination_hex363 0.5454352 0.0208499 26.160 < 2e-16 ***
destination_hex364 1.1973834 0.0175234 68.330 < 2e-16 ***
destination_hex383 1.4449415 0.0182762 79.061 < 2e-16 ***
destination_hex384 -2.1936378 0.0179599 -122.141 < 2e-16 ***
destination_hex385 0.1389370 0.0218336 6.363 1.97e-10 ***
destination_hex404 1.3785272 0.0217872 63.272 < 2e-16 ***
destination_hex405 0.7978607 0.0189640 42.072 < 2e-16 ***
destination_hex406 1.5982275 0.0163378 97.824 < 2e-16 ***
destination_hex407 1.1117219 0.0177232 62.727 < 2e-16 ***
destination_hex408 2.2935742 0.0162224 141.383 < 2e-16 ***
destination_hex425 -0.3918982 0.0284394 -13.780 < 2e-16 ***
destination_hex426 -0.8558084 0.0189432 -45.178 < 2e-16 ***
destination_hex427 -1.9879365 0.0278803 -71.303 < 2e-16 ***
destination_hex428 0.1429069 0.0187737 7.612 2.70e-14 ***
destination_hex429 -0.2498455 0.0275317 -9.075 < 2e-16 ***
destination_hex44 2.5053180 0.0277700 90.217 < 2e-16 ***
destination_hex446 0.5232877 0.0269868 19.390 < 2e-16 ***
destination_hex447 -0.1392964 0.0232752 -5.985 2.17e-09 ***
destination_hex448 -0.1026489 0.0193876 -5.295 1.19e-07 ***
destination_hex449 -0.5910395 0.0174412 -33.887 < 2e-16 ***
destination_hex450 -0.2252214 0.0195815 -11.502 < 2e-16 ***
destination_hex46 1.5559135 0.0259417 59.977 < 2e-16 ***
destination_hex468 0.4522894 0.0186447 24.258 < 2e-16 ***
destination_hex469 -0.5103317 0.0177032 -28.827 < 2e-16 ***
destination_hex470 -0.0947924 0.0170234 -5.568 2.57e-08 ***
destination_hex471 0.0971193 0.0221151 4.392 1.13e-05 ***
destination_hex488 0.3391002 0.0271950 12.469 < 2e-16 ***
destination_hex489 -1.6093622 0.0497386 -32.356 < 2e-16 ***
destination_hex490 0.4988041 0.0176754 28.220 < 2e-16 ***
destination_hex491 -2.1601433 0.0216250 -99.891 < 2e-16 ***
destination_hex493 -2.6033067 0.0517478 -50.308 < 2e-16 ***
destination_hex494 -0.7352740 0.0268258 -27.409 < 2e-16 ***
destination_hex509 0.9815025 0.0214401 45.779 < 2e-16 ***
destination_hex510 0.9114727 0.0183617 49.640 < 2e-16 ***
destination_hex511 -0.1115208 0.0168389 -6.623 3.52e-11 ***
destination_hex512 -0.1990739 0.0167023 -11.919 < 2e-16 ***
destination_hex513 1.1379677 0.0172461 65.984 < 2e-16 ***
destination_hex514 0.4770694 0.0194616 24.513 < 2e-16 ***
destination_hex515 -0.9229175 0.0329510 -28.009 < 2e-16 ***
destination_hex530 0.0641379 0.0335039 1.914 0.055577 .
destination_hex531 2.6362265 0.0166696 158.146 < 2e-16 ***
destination_hex532 0.5139991 0.0178596 28.780 < 2e-16 ***
destination_hex533 1.4109719 0.0158407 89.072 < 2e-16 ***
destination_hex534 0.4067875 0.0167394 24.301 < 2e-16 ***
destination_hex536 -0.4673862 0.0234721 -19.912 < 2e-16 ***
destination_hex537 -1.1670711 0.0369437 -31.591 < 2e-16 ***
destination_hex538 -1.5692648 0.0452405 -34.687 < 2e-16 ***
destination_hex539 -5.2668165 0.5775717 -9.119 < 2e-16 ***
destination_hex551 0.9018901 0.0236884 38.073 < 2e-16 ***
destination_hex552 1.2467596 0.0187343 66.549 < 2e-16 ***
destination_hex553 -0.0785298 0.0176659 -4.445 8.78e-06 ***
destination_hex554 -0.6984565 0.0169426 -41.225 < 2e-16 ***
destination_hex555 0.5233914 0.0172301 30.377 < 2e-16 ***
destination_hex559 -1.8997287 0.0567182 -33.494 < 2e-16 ***
destination_hex560 0.6629469 0.0224952 29.471 < 2e-16 ***
destination_hex561 -1.8132653 0.0690435 -26.263 < 2e-16 ***
destination_hex572 -0.0866186 0.0359504 -2.409 0.015979 *
destination_hex573 1.8035236 0.0185614 97.165 < 2e-16 ***
destination_hex574 -0.5257457 0.0226819 -23.179 < 2e-16 ***
destination_hex575 2.4458192 0.0156436 156.346 < 2e-16 ***
destination_hex576 -0.0426010 0.0167479 -2.544 0.010970 *
destination_hex578 -3.9048218 0.1077484 -36.240 < 2e-16 ***
destination_hex582 -2.1369302 0.0677055 -31.562 < 2e-16 ***
destination_hex583 -3.8396840 0.2187739 -17.551 < 2e-16 ***
destination_hex584 -0.4935946 0.0381690 -12.932 < 2e-16 ***
destination_hex593 -0.6990535 0.0283225 -24.682 < 2e-16 ***
destination_hex594 0.9760421 0.0205358 47.529 < 2e-16 ***
destination_hex595 0.8975940 0.0165469 54.245 < 2e-16 ***
destination_hex596 0.0885354 0.0163155 5.426 5.75e-08 ***
destination_hex597 -0.6475877 0.0218553 -29.631 < 2e-16 ***
destination_hex603 -1.5930612 0.0535299 -29.760 < 2e-16 ***
destination_hex604 -1.0644839 0.0470537 -22.623 < 2e-16 ***
destination_hex615 -0.2490286 0.0212590 -11.714 < 2e-16 ***
destination_hex616 0.7382123 0.0176209 41.894 < 2e-16 ***
destination_hex617 -0.6783702 0.0179619 -37.767 < 2e-16 ***
destination_hex618 -0.1053650 0.0166671 -6.322 2.59e-10 ***
destination_hex620 -0.2957742 0.0193104 -15.317 < 2e-16 ***
destination_hex637 -0.3354277 0.0189013 -17.746 < 2e-16 ***
destination_hex638 -0.0620502 0.0164961 -3.762 0.000169 ***
destination_hex657 1.1405918 0.0169579 67.260 < 2e-16 ***
destination_hex658 0.4320534 0.0165676 26.078 < 2e-16 ***
destination_hex659 0.2400171 0.0164858 14.559 < 2e-16 ***
destination_hex66 0.7901672 0.0473513 16.687 < 2e-16 ***
destination_hex660 0.9057303 0.0159863 56.657 < 2e-16 ***
destination_hex662 0.2789638 0.0190551 14.640 < 2e-16 ***
destination_hex67 1.6036205 0.0222757 71.990 < 2e-16 ***
destination_hex677 1.0090754 0.0180280 55.973 < 2e-16 ***
destination_hex678 -0.5355106 0.0207194 -25.846 < 2e-16 ***
destination_hex679 0.8916864 0.0162391 54.910 < 2e-16 ***
destination_hex68 1.0920157 0.0258648 42.220 < 2e-16 ***
destination_hex680 2.3415172 0.0156750 149.379 < 2e-16 ***
destination_hex681 -1.2648077 0.0236467 -53.488 < 2e-16 ***
destination_hex699 0.6586173 0.0178084 36.984 < 2e-16 ***
destination_hex700 0.3565360 0.0168395 21.173 < 2e-16 ***
destination_hex701 -2.1288027 0.0245569 -86.688 < 2e-16 ***
destination_hex702 0.6639123 0.0161700 41.058 < 2e-16 ***
destination_hex704 -0.0928704 0.0185102 -5.017 5.24e-07 ***
destination_hex722 -0.4709747 0.0182308 -25.834 < 2e-16 ***
destination_hex725 -2.3870297 0.0309354 -77.162 < 2e-16 ***
destination_hex741 1.3072565 0.0170108 76.849 < 2e-16 ***
destination_hex743 -2.4927592 0.0260080 -95.846 < 2e-16 ***
destination_hex744 0.5952392 0.0162016 36.740 < 2e-16 ***
destination_hex761 1.6382570 0.0175554 93.319 < 2e-16 ***
destination_hex762 -0.3379884 0.0199539 -16.938 < 2e-16 ***
destination_hex763 -2.4170476 0.0255807 -94.487 < 2e-16 ***
destination_hex764 1.2198896 0.0158474 76.977 < 2e-16 ***
destination_hex765 -0.3874726 0.0180213 -21.501 < 2e-16 ***
destination_hex767 -0.3445891 0.0168970 -20.394 < 2e-16 ***
destination_hex772 -0.9024959 0.0379872 -23.758 < 2e-16 ***
destination_hex784 -1.7786853 0.0251235 -70.798 < 2e-16 ***
destination_hex785 0.2099135 0.0164083 12.793 < 2e-16 ***
destination_hex786 0.0602097 0.0162450 3.706 0.000210 ***
destination_hex787 -0.3755278 0.0181598 -20.679 < 2e-16 ***
destination_hex788 -2.2097988 0.0208271 -106.102 < 2e-16 ***
destination_hex789 -2.7447032 0.0227814 -120.480 < 2e-16 ***
destination_hex803 0.3883515 0.0207964 18.674 < 2e-16 ***
destination_hex804 0.5204669 0.0168581 30.873 < 2e-16 ***
destination_hex805 1.8225420 0.0157272 115.884 < 2e-16 ***
destination_hex806 -0.3830464 0.0165747 -23.110 < 2e-16 ***
destination_hex807 -0.3180873 0.0169789 -18.734 < 2e-16 ***
destination_hex808 -2.1082289 0.0250765 -84.072 < 2e-16 ***
destination_hex809 -0.2592403 0.0163629 -15.843 < 2e-16 ***
destination_hex810 -0.7888293 0.0176522 -44.687 < 2e-16 ***
destination_hex814 0.0212071 0.0248311 0.854 0.393076
destination_hex819 1.9266353 0.0210658 91.458 < 2e-16 ***
destination_hex824 0.5461505 0.0204589 26.695 < 2e-16 ***
destination_hex826 0.0763996 0.0165973 4.603 4.16e-06 ***
destination_hex827 -0.4451573 0.0167432 -26.587 < 2e-16 ***
destination_hex828 -0.0543241 0.0162481 -3.343 0.000828 ***
destination_hex829 -0.4090152 0.0174892 -23.387 < 2e-16 ***
destination_hex830 -1.7267554 0.0200078 -86.304 < 2e-16 ***
destination_hex831 1.8254412 0.0156799 116.419 < 2e-16 ***
destination_hex832 1.2190587 0.0160249 76.073 < 2e-16 ***
destination_hex835 -0.7666582 0.0254775 -30.092 < 2e-16 ***
destination_hex844 0.0453956 0.0236888 1.916 0.055323 .
destination_hex846 -0.0595007 0.0169721 -3.506 0.000455 ***
destination_hex847 0.9161139 0.0160851 56.954 < 2e-16 ***
destination_hex848 -0.1188273 0.0166576 -7.134 9.78e-13 ***
destination_hex849 -0.9244399 0.0175318 -52.729 < 2e-16 ***
destination_hex850 -0.0891826 0.0164713 -5.414 6.15e-08 ***
destination_hex851 -0.4658468 0.0166045 -28.055 < 2e-16 ***
destination_hex852 -0.5136014 0.0175796 -29.216 < 2e-16 ***
destination_hex853 0.0342241 0.0176788 1.936 0.052882 .
destination_hex854 0.2560022 0.0210023 12.189 < 2e-16 ***
destination_hex855 -0.5381096 0.0249706 -21.550 < 2e-16 ***
destination_hex856 -1.6107042 0.0355292 -45.335 < 2e-16 ***
destination_hex86 1.4720357 0.0393509 37.408 < 2e-16 ***
destination_hex866 0.9858791 0.0184205 53.521 < 2e-16 ***
destination_hex867 1.5880741 0.0161042 98.613 < 2e-16 ***
destination_hex868 1.1132509 0.0163125 68.245 < 2e-16 ***
destination_hex869 2.0122528 0.0162859 123.558 < 2e-16 ***
destination_hex87 -1.8430958 0.0897622 -20.533 < 2e-16 ***
destination_hex870 1.5069166 0.0157134 95.900 < 2e-16 ***
destination_hex871 1.4809079 0.0159653 92.758 < 2e-16 ***
destination_hex872 -0.0230151 0.0163879 -1.404 0.160202
destination_hex873 -0.3632177 0.0173449 -20.941 < 2e-16 ***
destination_hex874 -2.2114808 0.0204343 -108.224 < 2e-16 ***
destination_hex875 -1.3255216 0.0324910 -40.797 < 2e-16 ***
destination_hex876 -0.9427180 0.0245596 -38.385 < 2e-16 ***
destination_hex877 0.1242916 0.0214728 5.788 7.11e-09 ***
destination_hex88 1.1042917 0.0241332 45.758 < 2e-16 ***
destination_hex887 0.1952162 0.0175210 11.142 < 2e-16 ***
destination_hex888 -0.9158285 0.0205216 -44.627 < 2e-16 ***
destination_hex889 -0.2738996 0.0200724 -13.646 < 2e-16 ***
destination_hex89 0.2684227 0.0282404 9.505 < 2e-16 ***
destination_hex890 0.6955251 0.0161732 43.005 < 2e-16 ***
destination_hex891 -1.4667185 0.0213501 -68.698 < 2e-16 ***
destination_hex893 0.4628824 0.0160382 28.861 < 2e-16 ***
destination_hex894 -1.2844107 0.0193309 -66.444 < 2e-16 ***
destination_hex895 -0.1134022 0.0179827 -6.306 2.86e-10 ***
destination_hex896 -2.3343314 0.0337072 -69.253 < 2e-16 ***
destination_hex897 -2.1356463 0.0312938 -68.245 < 2e-16 ***
destination_hex898 -0.1820836 0.0210695 -8.642 < 2e-16 ***
destination_hex90 -2.1700237 0.5006794 -4.334 1.46e-05 ***
destination_hex908 0.9051761 0.0188415 48.042 < 2e-16 ***
destination_hex909 0.0398940 0.0167202 2.386 0.017034 *
destination_hex910 -0.8131626 0.0194283 -41.855 < 2e-16 ***
destination_hex911 1.3306871 0.0159530 83.413 < 2e-16 ***
destination_hex912 -0.4875820 0.0170012 -28.679 < 2e-16 ***
destination_hex915 -0.1455502 0.0165040 -8.819 < 2e-16 ***
destination_hex917 1.0366212 0.0163796 63.288 < 2e-16 ***
destination_hex918 -2.9661895 0.0427750 -69.344 < 2e-16 ***
destination_hex919 -1.5641955 0.0212485 -73.615 < 2e-16 ***
destination_hex928 -1.0249513 0.0231839 -44.210 < 2e-16 ***
destination_hex929 -0.0858629 0.0169781 -5.057 4.25e-07 ***
destination_hex930 0.6019762 0.0159268 37.796 < 2e-16 ***
destination_hex931 -0.2194392 0.0184907 -11.868 < 2e-16 ***
destination_hex932 -2.5420069 0.0288619 -88.075 < 2e-16 ***
destination_hex933 0.2992369 0.0171468 17.451 < 2e-16 ***
destination_hex934 -0.4136514 0.0174019 -23.770 < 2e-16 ***
destination_hex935 1.8351125 0.0156134 117.534 < 2e-16 ***
destination_hex938 -4.9166591 0.1748272 -28.123 < 2e-16 ***
destination_hex939 1.9253735 0.0158486 121.485 < 2e-16 ***
destination_hex940 -2.0272457 0.0241425 -83.970 < 2e-16 ***
destination_hex949 -0.6799055 0.0211374 -32.166 < 2e-16 ***
destination_hex950 1.0119990 0.0162881 62.131 < 2e-16 ***
destination_hex951 1.7852820 0.0157167 113.592 < 2e-16 ***
destination_hex952 0.9036658 0.0172509 52.384 < 2e-16 ***
destination_hex953 0.2385970 0.0176755 13.499 < 2e-16 ***
destination_hex954 -1.8781100 0.0230242 -81.571 < 2e-16 ***
destination_hex955 1.0230126 0.0160191 63.862 < 2e-16 ***
destination_hex956 -0.6703838 0.0178915 -37.469 < 2e-16 ***
destination_hex957 -0.4862085 0.0175847 -27.650 < 2e-16 ***
destination_hex959 -0.1393895 0.0268822 -5.185 2.16e-07 ***
destination_hex961 -0.8188427 0.0195951 -41.788 < 2e-16 ***
destination_hex962 1.4713358 0.0162433 90.581 < 2e-16 ***
destination_hex970 0.7142491 0.0166288 42.953 < 2e-16 ***
destination_hex971 0.7981671 0.0160989 49.579 < 2e-16 ***
destination_hex972 -0.3925277 0.0169587 -23.146 < 2e-16 ***
destination_hex974 -0.4918882 0.0186093 -26.432 < 2e-16 ***
destination_hex975 -1.5005453 0.0222305 -67.499 < 2e-16 ***
destination_hex976 -0.9269298 0.0190122 -48.754 < 2e-16 ***
destination_hex977 -0.4599643 0.0166699 -27.592 < 2e-16 ***
destination_hex978 -3.3593471 0.0195181 -172.115 < 2e-16 ***
destination_hex982 -1.2867218 0.0188465 -68.274 < 2e-16 ***
destination_hex983 4.4599209 0.0191106 233.374 < 2e-16 ***
destination_hex984 2.8353507 0.0165307 171.520 < 2e-16 ***
destination_hex991 0.7945254 0.0168896 47.042 < 2e-16 ***
destination_hex992 0.9132607 0.0163464 55.869 < 2e-16 ***
destination_hex993 -0.6755633 0.0181387 -37.244 < 2e-16 ***
destination_hex994 -0.6145311 0.0190532 -32.253 < 2e-16 ***
destination_hex995 0.0120222 0.0173293 0.694 0.487839
destination_hex996 -0.7846182 0.0188386 -41.650 < 2e-16 ***
destination_hex997 -0.6156297 0.0206978 -29.744 < 2e-16 ***
destination_hex998 -0.2347780 0.0164742 -14.251 < 2e-16 ***
destination_hex999 -2.3796323 0.0195230 -121.889 < 2e-16 ***
log(distance) -1.3773447 0.0002468 -5579.969 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 27574285 on 63251 degrees of freedom
AIC: 27934252
Number of Fisher Scoring iterations: 9
Code
CalcRSquared(docSIM$data$trips, docSIM$fitted.values)
[1] 0.5336822
- glm from stats package in base R fits generalized linear models. In this code,
docSIM
is a Poisson regression model with a log link function. The model predictstrips
based onorigin_hex
,destination_hex
, and the logarithm ofdistance
. - summary from base R provides a summary of the model’s fit, including coefficients, statistical significance, and other diagnostics.
CalcRSquared
is a custom function for calculating the R-squared value of the model.
Key Coefficients: This Poisson regression model explores the relationship between trip counts and predictor variables, including origin, destination, and the logarithm of distance. The estimated coefficients, accompanied by their p-values, reveal the significance of each predictor in influencing trip counts.
- Intercept: 14.34 (p < 2e-16)
- origin_hex1003: 2.59 (p < 2e-16)
- origin_hex1004: 3.41 (p < 2e-16)
- origin_hex1011: -1.06 (p < 2e-16)
- origin_hex1012: -0.91 (p < 2e-16)
- origin_hex1013: -0.27 (p < 2e-16)
- origin_hex1014: 0.36 (p < 2e-16)
- origin_hex1015: -0.44 (p < 2e-16)
- origin_hex1016: 1.34 (p < 2e-16)
- origin_hex1018: 1.91 (p < 2e-16)
- and various other dummy origin and destination variables in which many are statistically significant.
Model Fit: The model’s R-squared value is approximately 0.534, indicating that around 53.4% of the variability in trip counts is explained by the selected predictor variables. The goodness-of-fit metrics, including the residual deviance and AIC, support the model’s effectiveness in capturing patterns within the dataset. The p-values for each predictor underscore their significance in explaining the observed variation in trip counts.
Note that push_est_pop
which represent proxy for population in the origin location counterintuitively have a negative coefficient. Nevertheless,it might simply be a symptomps of multicollinearity. As we can see, the push_hdb_sf_count
which previously was identified to be highly correlated with push_hdb_sf_count
, have positive coefficient. This in a way suggest that the impact of the two offset each other to some extent, and the net effect most likely be positive. We can see on the later whether this hunch is correct in the next section, where highly correlated variables are eliminated from the model.
6.3 The 3 Models With Elimination
Unconstrained
Code
<- glm(formula = trips ~
uncSIM2 log(push_num_bus_stops) +
#log(push_station_count) +
log(push_trainexit_count) +
#log(push_hdb_sf_count) +
log(push_est_pop) +
#log(pull_station_count) +
log(pull_trainexit_count) +
log(pull_biz_count) +
log(pull_entertn_count) +
log(pull_fnb_count) +
#log(pull_finance_count) +
#log(pull_lnr_count) +
#log(pull_retails_count) +
log(pull_schools_sf_count) +
log(distance),
family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(uncSIM2)
Call:
glm(formula = trips ~ log(push_num_bus_stops) + log(push_trainexit_count) +
log(push_est_pop) + log(pull_trainexit_count) + log(pull_biz_count) +
log(pull_entertn_count) + log(pull_fnb_count) + log(pull_schools_sf_count) +
log(distance), family = poisson(link = "log"), data = final_df,
na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.322e+01 1.646e-03 8031.6 <2e-16 ***
log(push_num_bus_stops) 3.832e-01 4.787e-04 800.5 <2e-16 ***
log(push_trainexit_count) 1.644e-01 3.139e-04 523.7 <2e-16 ***
log(push_est_pop) 1.297e-01 7.092e-05 1828.6 <2e-16 ***
log(pull_trainexit_count) 7.795e-01 3.125e-04 2493.9 <2e-16 ***
log(pull_biz_count) 7.339e-02 1.766e-04 415.7 <2e-16 ***
log(pull_entertn_count) -2.403e-01 7.956e-04 -302.0 <2e-16 ***
log(pull_fnb_count) -1.928e-01 2.581e-04 -747.1 <2e-16 ***
log(pull_schools_sf_count) 3.026e-01 6.350e-04 476.4 <2e-16 ***
log(distance) -1.169e+00 1.851e-04 -6313.0 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 52803529 on 64875 degrees of freedom
AIC: 53160249
Number of Fisher Scoring iterations: 7
Code
CalcRSquared(uncSIM2$data$trips, uncSIM2$fitted.values)
[1] 0.1306422
- glm from stats R package is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution. In this code, it’s applied to the
trips
as the response variable and a set of predictor variables in thefinal_df
data frame. - The formula
trips ~ log(pull_trainexit_count) + log(pull_biz_count) + log(pull_entertn_count) + log(pull_fnb_count) + log(pull_schools_sf_count) + log(distance) + origin_hex
specifies thattrips
is modeled as a function ofpull_trainexit_count
,pull_biz_count
,pull_entertn_count
,pull_fnb_count
,pull_schools_sf_count
,distance
, andorigin_hex
. Thelog
function is applied to transform the predictor variables. - The argument
family = poisson(link = "log")
specifies that a Poisson regression model is fitted with a log link function. - The argument
na.action = na.exclude
specifies that any missing values should be excluded from the model fitting process. - summary from base R package is used to produce result summaries of the results of various model fitting functions. In this code, it’s applied to the fitted model
orcSIM2
to obtain a summary of the model fit. CalcRSquared
is user-defined function , which is used to calculate the R-squared value of the fitted model. It takes the observed valuesorcSIM2$data$trips
and the fitted valuesorcSIM2$fitted.values
as inputs.
Key Coefficients: The Poisson regression model reveals crucial coefficients that help interpret the impact of predictor variables on the logarithm of trip counts. With highly significant p-values (< 2e-16), each coefficient contributes significantly to explaining the variability in trip counts.
- Intercept: 13.22 (p < 2e-16)
- log(push_num_bus_stops): 0.383 (p < 2e-16)
- log(push_trainexit_count): 0.164 (p < 2e-16)
- log(push_est_pop): 0.130 (p < 2e-16)
- log(pull_trainexit_count): 0.780 (p < 2e-16)
- log(pull_biz_count): 0.073 (p < 2e-16)
- log(pull_entertn_count): -0.240 (p < 2e-16)
- log(pull_fnb_count): -0.193 (p < 2e-16)
- log(pull_schools_sf_count): 0.303 (p < 2e-16)
- log(distance): -1.169 (p < 2e-16)
Model Fit: The R-squared value for the model is approximately 0.131, suggesting that the selected predictor variables collectively explain around 13.1% of the variability in trip counts. The goodness-of-fit metrics, including the residual deviance and AIC, demonstrate the model’s efficacy in capturing patterns within the data. Notably, all predictor variables exhibit highly significant p-values, emphasizing their importance in explaining the observed variation in trip counts.
Origin Constrained
Code
<- glm(formula = trips ~
orcSIM2 #log(pull_station_count) +
log(pull_trainexit_count) +
log(pull_biz_count) +
log(pull_entertn_count) +
log(pull_fnb_count) +
#log(pull_finance_count) +
#log(pull_lnr_count) +
#log(pull_retails_count) +
log(pull_schools_sf_count) +
log(distance) +
origin_hex,family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(orcSIM2)
Call:
glm(formula = trips ~ log(pull_trainexit_count) + log(pull_biz_count) +
log(pull_entertn_count) + log(pull_fnb_count) + log(pull_schools_sf_count) +
log(distance) + origin_hex, family = poisson(link = "log"),
data = final_df, na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 13.5601125 0.0243194 557.585 < 2e-16 ***
log(pull_trainexit_count) 0.8311186 0.0003245 2561.425 < 2e-16 ***
log(pull_biz_count) 0.0971130 0.0001869 519.701 < 2e-16 ***
log(pull_entertn_count) -0.1844719 0.0008291 -222.507 < 2e-16 ***
log(pull_fnb_count) -0.1020034 0.0002716 -375.512 < 2e-16 ***
log(pull_schools_sf_count) 0.2594574 0.0006662 389.468 < 2e-16 ***
log(distance) -1.2396219 0.0002135 -5806.644 < 2e-16 ***
origin_hex1003 2.6321831 0.0245529 107.204 < 2e-16 ***
origin_hex1004 3.4913499 0.0243933 143.127 < 2e-16 ***
origin_hex1011 -0.5583317 0.0386093 -14.461 < 2e-16 ***
origin_hex1012 -0.6221530 0.0399374 -15.578 < 2e-16 ***
origin_hex1013 -0.0154868 0.0288940 -0.536 0.591967
origin_hex1014 0.4643249 0.0264014 17.587 < 2e-16 ***
origin_hex1015 -0.1897484 0.0289102 -6.563 5.26e-11 ***
origin_hex1016 1.1782364 0.0252049 46.746 < 2e-16 ***
origin_hex1018 1.6003976 0.0260518 61.431 < 2e-16 ***
origin_hex1019 3.0087133 0.0246199 122.206 < 2e-16 ***
origin_hex1023 1.7387247 0.0258759 67.195 < 2e-16 ***
origin_hex1024 2.9548088 0.0245801 120.211 < 2e-16 ***
origin_hex1025 -1.5886599 0.0547596 -29.012 < 2e-16 ***
origin_hex1033 0.6336535 0.0265924 23.828 < 2e-16 ***
origin_hex1034 1.4347431 0.0252096 56.913 < 2e-16 ***
origin_hex1035 1.9553158 0.0247813 78.903 < 2e-16 ***
origin_hex1036 -0.0553465 0.0278600 -1.987 0.046967 *
origin_hex1037 1.1454289 0.0251632 45.520 < 2e-16 ***
origin_hex1043 -0.2291721 0.0345369 -6.636 3.23e-11 ***
origin_hex1045 2.4064097 0.0245920 97.853 < 2e-16 ***
origin_hex1046 2.5303041 0.0246862 102.499 < 2e-16 ***
origin_hex1053 1.7657206 0.0248481 71.061 < 2e-16 ***
origin_hex1054 1.1089895 0.0253902 43.678 < 2e-16 ***
origin_hex1055 1.9887126 0.0247348 80.401 < 2e-16 ***
origin_hex1056 0.7833670 0.0258494 30.305 < 2e-16 ***
origin_hex1064 -3.1189055 0.2511752 -12.417 < 2e-16 ***
origin_hex1066 2.4699636 0.0246914 100.033 < 2e-16 ***
origin_hex1067 2.4733643 0.0250513 98.732 < 2e-16 ***
origin_hex1074 1.3084588 0.0253222 51.672 < 2e-16 ***
origin_hex1075 0.8624572 0.0261699 32.956 < 2e-16 ***
origin_hex1076 0.7514178 0.0256649 29.278 < 2e-16 ***
origin_hex1077 0.7684923 0.0261874 29.346 < 2e-16 ***
origin_hex1079 1.9370069 0.0247098 78.390 < 2e-16 ***
origin_hex1085 -2.8197339 0.1434885 -19.651 < 2e-16 ***
origin_hex1087 2.0919066 0.0248643 84.133 < 2e-16 ***
origin_hex1088 1.0651208 0.0268976 39.599 < 2e-16 ***
origin_hex109 -1.5630311 0.1019469 -15.332 < 2e-16 ***
origin_hex1094 -1.0668937 0.0497927 -21.427 < 2e-16 ***
origin_hex1095 -0.8499649 0.0407394 -20.863 < 2e-16 ***
origin_hex1096 0.7163583 0.0315284 22.721 < 2e-16 ***
origin_hex1097 2.3207635 0.0244891 94.767 < 2e-16 ***
origin_hex1098 -0.2719177 0.0301170 -9.029 < 2e-16 ***
origin_hex1099 1.3026102 0.0251109 51.874 < 2e-16 ***
origin_hex110 -0.5973502 0.0756133 -7.900 2.79e-15 ***
origin_hex1105 -1.1658159 0.0658351 -17.708 < 2e-16 ***
origin_hex1106 -2.1445537 0.0948277 -22.615 < 2e-16 ***
origin_hex1107 -0.3089214 0.0365418 -8.454 < 2e-16 ***
origin_hex1108 3.7729230 0.0243338 155.049 < 2e-16 ***
origin_hex1109 1.5277073 0.0262193 58.267 < 2e-16 ***
origin_hex111 1.6818593 0.0267544 62.863 < 2e-16 ***
origin_hex1116 0.6678164 0.0256017 26.085 < 2e-16 ***
origin_hex1117 -0.4596485 0.0297749 -15.437 < 2e-16 ***
origin_hex1118 -0.6429810 0.0307660 -20.899 < 2e-16 ***
origin_hex1119 0.6143705 0.0260403 23.593 < 2e-16 ***
origin_hex112 -2.4226747 0.0685892 -35.322 < 2e-16 ***
origin_hex1120 0.3248735 0.0274792 11.823 < 2e-16 ***
origin_hex1129 2.3981351 0.0246438 97.312 < 2e-16 ***
origin_hex1130 2.9762591 0.0245143 121.409 < 2e-16 ***
origin_hex1131 1.4001784 0.0261798 53.483 < 2e-16 ***
origin_hex1136 -0.1142536 0.0285752 -3.998 6.38e-05 ***
origin_hex1138 -0.8795976 0.0373732 -23.536 < 2e-16 ***
origin_hex1139 1.4691385 0.0247430 59.376 < 2e-16 ***
origin_hex1141 1.3957032 0.0249913 55.848 < 2e-16 ***
origin_hex1148 -1.0618916 0.0569957 -18.631 < 2e-16 ***
origin_hex1149 0.5744042 0.0296594 19.367 < 2e-16 ***
origin_hex1150 3.0842311 0.0244665 126.059 < 2e-16 ***
origin_hex1151 1.7237379 0.0250245 68.882 < 2e-16 ***
origin_hex1158 0.0915149 0.0265761 3.444 0.000574 ***
origin_hex1159 1.3891242 0.0248632 55.871 < 2e-16 ***
origin_hex1160 2.3071450 0.0245029 94.158 < 2e-16 ***
origin_hex1171 2.9932968 0.0245092 122.129 < 2e-16 ***
origin_hex1172 2.8742677 0.0244897 117.366 < 2e-16 ***
origin_hex1173 0.5496698 0.0271436 20.250 < 2e-16 ***
origin_hex1174 -2.7413506 0.2683616 -10.215 < 2e-16 ***
origin_hex1178 0.2061445 0.0263014 7.838 4.59e-15 ***
origin_hex1179 1.0359993 0.0251507 41.192 < 2e-16 ***
origin_hex1180 1.9191626 0.0245945 78.032 < 2e-16 ***
origin_hex1181 1.1425914 0.0250748 45.567 < 2e-16 ***
origin_hex1183 0.1673654 0.0268546 6.232 4.60e-10 ***
origin_hex1190 -0.8268382 0.0536401 -15.415 < 2e-16 ***
origin_hex1192 2.4335545 0.0249642 97.482 < 2e-16 ***
origin_hex1193 2.1781251 0.0247475 88.014 < 2e-16 ***
origin_hex1194 0.4077680 0.0278702 14.631 < 2e-16 ***
origin_hex1200 1.2530284 0.0251038 49.914 < 2e-16 ***
origin_hex1201 1.0083491 0.0252222 39.979 < 2e-16 ***
origin_hex1203 1.4957804 0.0249212 60.021 < 2e-16 ***
origin_hex1204 1.2149591 0.0251508 48.307 < 2e-16 ***
origin_hex1211 -1.2194108 0.0923335 -13.207 < 2e-16 ***
origin_hex1214 2.7686684 0.0245485 112.784 < 2e-16 ***
origin_hex1215 -0.3871613 0.0464658 -8.332 < 2e-16 ***
origin_hex1216 -1.2629433 0.0470366 -26.850 < 2e-16 ***
origin_hex1220 2.3037872 0.0245639 93.788 < 2e-16 ***
origin_hex1221 1.7547146 0.0246412 71.211 < 2e-16 ***
origin_hex1222 1.4577710 0.0260534 55.953 < 2e-16 ***
origin_hex1223 -0.4476813 0.0293855 -15.235 < 2e-16 ***
origin_hex1224 0.3127336 0.0264251 11.835 < 2e-16 ***
origin_hex1231 -3.1956826 0.1905340 -16.772 < 2e-16 ***
origin_hex1232 -1.8747531 0.1144070 -16.387 < 2e-16 ***
origin_hex1235 0.2400771 0.0277945 8.638 < 2e-16 ***
origin_hex1236 0.5630556 0.0277536 20.288 < 2e-16 ***
origin_hex1241 0.4198177 0.0261940 16.027 < 2e-16 ***
origin_hex1242 1.1795638 0.0251458 46.909 < 2e-16 ***
origin_hex1243 1.6830615 0.0247045 68.128 < 2e-16 ***
origin_hex1246 0.3510307 0.0258727 13.568 < 2e-16 ***
origin_hex1256 1.8885661 0.0254830 74.111 < 2e-16 ***
origin_hex1257 2.6108862 0.0247436 105.518 < 2e-16 ***
origin_hex1258 0.3132340 0.0281438 11.130 < 2e-16 ***
origin_hex1262 1.0427069 0.0255613 40.792 < 2e-16 ***
origin_hex1263 1.3293722 0.0247779 53.651 < 2e-16 ***
origin_hex1264 0.4840117 0.0269030 17.991 < 2e-16 ***
origin_hex1265 -0.2373854 0.0279158 -8.504 < 2e-16 ***
origin_hex1266 1.1274699 0.0254110 44.369 < 2e-16 ***
origin_hex1267 -0.8953263 0.0361145 -24.791 < 2e-16 ***
origin_hex1272 -3.1268043 0.1179927 -26.500 < 2e-16 ***
origin_hex1273 0.6565908 0.0269643 24.350 < 2e-16 ***
origin_hex1277 2.4373179 0.0245416 99.314 < 2e-16 ***
origin_hex1278 0.1175850 0.0278045 4.229 2.35e-05 ***
origin_hex128 0.6462347 0.0329259 19.627 < 2e-16 ***
origin_hex1283 2.4578844 0.0245195 100.242 < 2e-16 ***
origin_hex1284 1.8082322 0.0246867 73.247 < 2e-16 ***
origin_hex1285 2.4708141 0.0244614 101.009 < 2e-16 ***
origin_hex1286 0.6551805 0.0262060 25.001 < 2e-16 ***
origin_hex1289 -1.4210240 0.0521212 -27.264 < 2e-16 ***
origin_hex129 -1.9450528 0.1905352 -10.208 < 2e-16 ***
origin_hex1293 -2.7169118 0.0923337 -29.425 < 2e-16 ***
origin_hex1294 2.2447941 0.0249321 90.036 < 2e-16 ***
origin_hex1295 -0.2598588 0.0317694 -8.180 2.85e-16 ***
origin_hex1298 1.6130452 0.0250449 64.406 < 2e-16 ***
origin_hex1299 2.1218011 0.0249574 85.017 < 2e-16 ***
origin_hex130 -1.8958716 0.0649032 -29.211 < 2e-16 ***
origin_hex1304 2.4543036 0.0245251 100.073 < 2e-16 ***
origin_hex1305 1.8164295 0.0245785 73.903 < 2e-16 ***
origin_hex1307 -1.6586584 0.0446958 -37.110 < 2e-16 ***
origin_hex1308 1.2627279 0.0249820 50.545 < 2e-16 ***
origin_hex131 -0.7366404 0.0427948 -17.213 < 2e-16 ***
origin_hex1310 -3.0307212 0.1370065 -22.121 < 2e-16 ***
origin_hex1316 -1.3148473 0.0410248 -32.050 < 2e-16 ***
origin_hex1317 0.4748518 0.0266677 17.806 < 2e-16 ***
origin_hex1318 0.0436923 0.0286183 1.527 0.126829
origin_hex1319 2.6630487 0.0245136 108.636 < 2e-16 ***
origin_hex132 -1.3099830 0.0537417 -24.376 < 2e-16 ***
origin_hex1320 1.3913525 0.0257691 53.993 < 2e-16 ***
origin_hex1325 0.0774890 0.0271331 2.856 0.004292 **
origin_hex1326 1.9879602 0.0245679 80.917 < 2e-16 ***
origin_hex1327 1.7102827 0.0246387 69.415 < 2e-16 ***
origin_hex1328 0.4263893 0.0259708 16.418 < 2e-16 ***
origin_hex1329 0.5010581 0.0268264 18.678 < 2e-16 ***
origin_hex133 -1.5380573 0.0448291 -34.309 < 2e-16 ***
origin_hex1330 0.0402126 0.0255228 1.576 0.115129
origin_hex1331 -3.5321859 0.3024865 -11.677 < 2e-16 ***
origin_hex1333 0.0808432 0.0272230 2.970 0.002981 **
origin_hex1334 0.3978298 0.0268894 14.795 < 2e-16 ***
origin_hex1335 -0.0524424 0.0295148 -1.777 0.075598 .
origin_hex1336 -2.6832628 0.1099236 -24.410 < 2e-16 ***
origin_hex1337 -2.0162587 0.0543931 -37.068 < 2e-16 ***
origin_hex1338 -2.8189671 0.0849204 -33.195 < 2e-16 ***
origin_hex1339 2.7296074 0.0244932 111.444 < 2e-16 ***
origin_hex134 0.1123959 0.0336005 3.345 0.000823 ***
origin_hex1340 1.1303555 0.0257728 43.859 < 2e-16 ***
origin_hex1341 -3.8017851 0.7075233 -5.373 7.73e-08 ***
origin_hex1346 1.6345822 0.0249820 65.430 < 2e-16 ***
origin_hex1347 2.5871118 0.0244644 105.750 < 2e-16 ***
origin_hex1348 0.9011615 0.0250085 36.034 < 2e-16 ***
origin_hex1349 0.6287824 0.0255280 24.631 < 2e-16 ***
origin_hex1350 0.6568704 0.0266132 24.682 < 2e-16 ***
origin_hex1353 0.1440397 0.0262106 5.495 3.90e-08 ***
origin_hex1354 0.1635457 0.0272028 6.012 1.83e-09 ***
origin_hex1355 0.9723208 0.0256684 37.880 < 2e-16 ***
origin_hex1357 -0.0279887 0.0305753 -0.915 0.359981
origin_hex1358 1.3412937 0.0252558 53.108 < 2e-16 ***
origin_hex1359 1.9648736 0.0247547 79.374 < 2e-16 ***
origin_hex1360 2.0283940 0.0247837 81.844 < 2e-16 ***
origin_hex1361 2.9094347 0.0245354 118.581 < 2e-16 ***
origin_hex1362 -1.3389857 0.0512410 -26.131 < 2e-16 ***
origin_hex1368 0.5648215 0.0256345 22.034 < 2e-16 ***
origin_hex1369 0.3521212 0.0257037 13.699 < 2e-16 ***
origin_hex1370 1.3491132 0.0247355 54.541 < 2e-16 ***
origin_hex1371 0.6694200 0.0261345 25.614 < 2e-16 ***
origin_hex1372 -0.0331448 0.0275140 -1.205 0.228337
origin_hex1373 -1.7973124 0.0525182 -34.223 < 2e-16 ***
origin_hex1374 0.2665378 0.0287254 9.279 < 2e-16 ***
origin_hex1375 1.3242047 0.0254203 52.092 < 2e-16 ***
origin_hex1376 0.9306368 0.0271451 34.284 < 2e-16 ***
origin_hex1379 -1.0677416 0.0420664 -25.382 < 2e-16 ***
origin_hex1380 2.9829518 0.0244118 122.193 < 2e-16 ***
origin_hex1381 2.6590037 0.0244980 108.540 < 2e-16 ***
origin_hex1382 2.1538316 0.0250008 86.150 < 2e-16 ***
origin_hex1383 -0.5150259 0.0340932 -15.106 < 2e-16 ***
origin_hex1388 0.9516246 0.0250785 37.946 < 2e-16 ***
origin_hex1389 0.2393601 0.0257840 9.283 < 2e-16 ***
origin_hex1390 0.6627362 0.0251274 26.375 < 2e-16 ***
origin_hex1391 0.6885313 0.0255971 26.899 < 2e-16 ***
origin_hex1392 0.1888036 0.0288882 6.536 6.33e-11 ***
origin_hex1393 -0.5832449 0.0284753 -20.483 < 2e-16 ***
origin_hex1394 0.6008593 0.0253666 23.687 < 2e-16 ***
origin_hex1395 0.6772073 0.0254362 26.624 < 2e-16 ***
origin_hex1396 1.9567311 0.0247345 79.109 < 2e-16 ***
origin_hex1397 1.5532127 0.0247611 62.728 < 2e-16 ***
origin_hex1398 0.8598673 0.0265336 32.407 < 2e-16 ***
origin_hex1400 2.1323290 0.0250531 85.112 < 2e-16 ***
origin_hex1401 2.2524716 0.0245303 91.824 < 2e-16 ***
origin_hex1402 2.4928473 0.0245933 101.363 < 2e-16 ***
origin_hex1404 2.4066330 0.0284271 84.660 < 2e-16 ***
origin_hex1410 1.2691508 0.0246277 51.534 < 2e-16 ***
origin_hex1411 0.4261868 0.0254976 16.715 < 2e-16 ***
origin_hex1412 0.7402423 0.0250205 29.585 < 2e-16 ***
origin_hex1413 1.5879648 0.0246881 64.321 < 2e-16 ***
origin_hex1414 0.7258208 0.0250369 28.990 < 2e-16 ***
origin_hex1415 0.4416192 0.0259034 17.049 < 2e-16 ***
origin_hex1416 1.0507831 0.0252748 41.574 < 2e-16 ***
origin_hex1417 1.1255775 0.0250517 44.930 < 2e-16 ***
origin_hex1418 1.9370633 0.0246875 78.463 < 2e-16 ***
origin_hex1419 1.3182416 0.0250718 52.579 < 2e-16 ***
origin_hex1422 2.5440560 0.0247092 102.960 < 2e-16 ***
origin_hex1423 3.5650023 0.0244377 145.881 < 2e-16 ***
origin_hex1430 1.0117867 0.0249182 40.604 < 2e-16 ***
origin_hex1431 1.1706581 0.0247047 47.386 < 2e-16 ***
origin_hex1432 1.2816680 0.0246915 51.907 < 2e-16 ***
origin_hex1433 -0.2511434 0.0289209 -8.684 < 2e-16 ***
origin_hex1434 1.3770674 0.0248100 55.505 < 2e-16 ***
origin_hex1435 1.8996665 0.0245513 77.375 < 2e-16 ***
origin_hex1436 -1.1129049 0.0330374 -33.686 < 2e-16 ***
origin_hex1437 2.0888153 0.0245978 84.919 < 2e-16 ***
origin_hex1438 2.4086532 0.0244476 98.523 < 2e-16 ***
origin_hex1439 2.9683307 0.0243938 121.684 < 2e-16 ***
origin_hex1440 -0.7967062 0.0314681 -25.318 < 2e-16 ***
origin_hex1442 1.9819139 0.0250768 79.034 < 2e-16 ***
origin_hex1443 3.1109090 0.0244804 127.078 < 2e-16 ***
origin_hex1444 2.5532749 0.0252695 101.042 < 2e-16 ***
origin_hex1452 0.1337540 0.0253849 5.269 1.37e-07 ***
origin_hex1453 0.7284033 0.0251210 28.996 < 2e-16 ***
origin_hex1454 -0.5400082 0.0302578 -17.847 < 2e-16 ***
origin_hex1455 0.8184838 0.0255251 32.066 < 2e-16 ***
origin_hex1456 1.4465183 0.0249166 58.054 < 2e-16 ***
origin_hex1457 2.1719563 0.0245558 88.450 < 2e-16 ***
origin_hex1458 2.2289925 0.0244962 90.993 < 2e-16 ***
origin_hex1459 1.9307923 0.0246425 78.352 < 2e-16 ***
origin_hex1460 1.1354312 0.0249978 45.421 < 2e-16 ***
origin_hex1461 -0.1675051 0.0293481 -5.708 1.15e-08 ***
origin_hex1464 3.1413848 0.0244527 128.468 < 2e-16 ***
origin_hex1465 3.0112269 0.0246434 122.192 < 2e-16 ***
origin_hex1472 -1.1371327 0.0306984 -37.042 < 2e-16 ***
origin_hex1473 -0.2820589 0.0260699 -10.819 < 2e-16 ***
origin_hex1474 0.8691706 0.0247906 35.061 < 2e-16 ***
origin_hex1475 1.9700503 0.0245637 80.202 < 2e-16 ***
origin_hex1476 1.4582636 0.0249804 58.376 < 2e-16 ***
origin_hex1477 2.7164313 0.0243779 111.430 < 2e-16 ***
origin_hex1478 1.1613254 0.0250061 46.442 < 2e-16 ***
origin_hex1479 1.3220928 0.0248627 53.176 < 2e-16 ***
origin_hex1480 2.9919888 0.0243656 122.796 < 2e-16 ***
origin_hex1481 0.5870939 0.0261571 22.445 < 2e-16 ***
origin_hex1482 0.3807482 0.0272531 13.971 < 2e-16 ***
origin_hex1485 1.4213089 0.0246762 57.598 < 2e-16 ***
origin_hex1494 0.0986690 0.0268243 3.678 0.000235 ***
origin_hex1495 0.3723177 0.0254086 14.653 < 2e-16 ***
origin_hex1496 0.9154498 0.0246448 37.146 < 2e-16 ***
origin_hex1497 1.8256290 0.0247360 73.805 < 2e-16 ***
origin_hex1498 2.1249336 0.0245430 86.580 < 2e-16 ***
origin_hex1499 2.2929422 0.0244729 93.693 < 2e-16 ***
origin_hex150 1.3176506 0.0312671 42.142 < 2e-16 ***
origin_hex1500 2.2914082 0.0247667 92.520 < 2e-16 ***
origin_hex1501 2.4037238 0.0244803 98.190 < 2e-16 ***
origin_hex1502 1.9709324 0.0246289 80.025 < 2e-16 ***
origin_hex1506 -2.5735036 0.1111470 -23.154 < 2e-16 ***
origin_hex151 -1.5278044 0.0634473 -24.080 < 2e-16 ***
origin_hex1515 -0.8572689 0.0321006 -26.706 < 2e-16 ***
origin_hex1516 0.0481137 0.0250766 1.919 0.055026 .
origin_hex1517 1.0013990 0.0251109 39.879 < 2e-16 ***
origin_hex1518 1.2406845 0.0252480 49.140 < 2e-16 ***
origin_hex1519 2.4680416 0.0246630 100.070 < 2e-16 ***
origin_hex152 -1.5677602 0.0846644 -18.517 < 2e-16 ***
origin_hex1520 1.0483915 0.0251342 41.712 < 2e-16 ***
origin_hex1521 0.3884695 0.0265219 14.647 < 2e-16 ***
origin_hex1522 2.7133961 0.0244453 110.999 < 2e-16 ***
origin_hex1523 0.7359670 0.0283776 25.935 < 2e-16 ***
origin_hex1524 1.1907201 0.0258376 46.085 < 2e-16 ***
origin_hex1527 0.3372697 0.0289291 11.658 < 2e-16 ***
origin_hex153 -1.7803352 0.0481000 -37.013 < 2e-16 ***
origin_hex1535 -2.3771729 0.0759643 -31.293 < 2e-16 ***
origin_hex1536 -1.6908891 0.0402372 -42.023 < 2e-16 ***
origin_hex1537 -0.9081673 0.0287447 -31.594 < 2e-16 ***
origin_hex1538 0.8874804 0.0249273 35.603 < 2e-16 ***
origin_hex1539 1.3639118 0.0247114 55.194 < 2e-16 ***
origin_hex154 1.5629202 0.0258227 60.525 < 2e-16 ***
origin_hex1540 2.0334837 0.0245752 82.745 < 2e-16 ***
origin_hex1541 2.8305757 0.0246879 114.654 < 2e-16 ***
origin_hex1542 0.2480041 0.0281200 8.820 < 2e-16 ***
origin_hex1543 0.9781718 0.0310760 31.477 < 2e-16 ***
origin_hex1544 1.7776739 0.0250063 71.089 < 2e-16 ***
origin_hex1547 -1.9944079 0.0626280 -31.845 < 2e-16 ***
origin_hex155 -1.4294817 0.0407966 -35.039 < 2e-16 ***
origin_hex1556 -1.0175957 0.0584291 -17.416 < 2e-16 ***
origin_hex1557 -1.7160398 0.0391498 -43.833 < 2e-16 ***
origin_hex1558 -0.1216792 0.0299044 -4.069 4.72e-05 ***
origin_hex1559 1.4750188 0.0246470 59.846 < 2e-16 ***
origin_hex156 -0.7071040 0.0455512 -15.523 < 2e-16 ***
origin_hex1560 2.3869414 0.0244610 97.581 < 2e-16 ***
origin_hex1561 2.2084062 0.0246081 89.743 < 2e-16 ***
origin_hex1562 -0.7221176 0.0307711 -23.467 < 2e-16 ***
origin_hex1563 0.9281044 0.0252030 36.825 < 2e-16 ***
origin_hex1564 0.3050754 0.0272829 11.182 < 2e-16 ***
origin_hex1565 0.1320352 0.0275845 4.787 1.70e-06 ***
origin_hex1566 -0.3918583 0.0308578 -12.699 < 2e-16 ***
origin_hex1567 -2.4600254 0.0802302 -30.662 < 2e-16 ***
origin_hex1568 -1.6924713 0.0658350 -25.708 < 2e-16 ***
origin_hex1578 -3.2203973 0.7075233 -4.552 5.32e-06 ***
origin_hex1580 0.1571991 0.0283398 5.547 2.91e-08 ***
origin_hex1581 -1.1312646 0.0311104 -36.363 < 2e-16 ***
origin_hex1582 2.0148224 0.0244893 82.273 < 2e-16 ***
origin_hex1583 -0.0245776 0.0311649 -0.789 0.430329
origin_hex1584 0.6622910 0.0261199 25.356 < 2e-16 ***
origin_hex1585 1.2917550 0.0256944 50.274 < 2e-16 ***
origin_hex1586 0.3680036 0.0269867 13.636 < 2e-16 ***
origin_hex1589 -3.0001747 0.1144069 -26.224 < 2e-16 ***
origin_hex1590 -1.7031133 0.0623640 -27.309 < 2e-16 ***
origin_hex1600 1.7636144 0.0258318 68.273 < 2e-16 ***
origin_hex1601 0.5414917 0.0252314 21.461 < 2e-16 ***
origin_hex1602 1.6402854 0.0248869 65.910 < 2e-16 ***
origin_hex1603 2.2276162 0.0244989 90.927 < 2e-16 ***
origin_hex1604 0.8137756 0.0253395 32.115 < 2e-16 ***
origin_hex1605 1.8974919 0.0245440 77.310 < 2e-16 ***
origin_hex1606 2.1663820 0.0257309 84.194 < 2e-16 ***
origin_hex1607 0.7348072 0.0258563 28.419 < 2e-16 ***
origin_hex1608 2.2915036 0.0245761 93.241 < 2e-16 ***
origin_hex1609 1.8342380 0.0247898 73.992 < 2e-16 ***
origin_hex1610 -1.6127621 0.0668200 -24.136 < 2e-16 ***
origin_hex1622 0.7009907 0.0312169 22.456 < 2e-16 ***
origin_hex1623 1.8737596 0.0245174 76.426 < 2e-16 ***
origin_hex1624 0.9320891 0.0254397 36.639 < 2e-16 ***
origin_hex1625 2.1588773 0.0246090 87.727 < 2e-16 ***
origin_hex1626 2.6202367 0.0244192 107.303 < 2e-16 ***
origin_hex1627 1.1503499 0.0251113 45.810 < 2e-16 ***
origin_hex1628 2.7677479 0.0244323 113.282 < 2e-16 ***
origin_hex1629 1.5174792 0.0250804 60.504 < 2e-16 ***
origin_hex1630 1.3595671 0.0253333 53.667 < 2e-16 ***
origin_hex1631 -2.2457430 0.0639174 -35.135 < 2e-16 ***
origin_hex1642 -0.4763641 0.0362729 -13.133 < 2e-16 ***
origin_hex1643 1.8166879 0.0245748 73.925 < 2e-16 ***
origin_hex1644 0.0892849 0.0288839 3.091 0.001994 **
origin_hex1645 1.3303726 0.0248902 53.450 < 2e-16 ***
origin_hex1646 1.2976713 0.0256454 50.601 < 2e-16 ***
origin_hex1647 1.3358644 0.0248048 53.855 < 2e-16 ***
origin_hex1648 1.9332980 0.0246313 78.489 < 2e-16 ***
origin_hex1649 2.5653992 0.0244652 104.859 < 2e-16 ***
origin_hex1650 2.1164401 0.0247229 85.607 < 2e-16 ***
origin_hex1664 -3.0498439 0.1684249 -18.108 < 2e-16 ***
origin_hex1665 2.0716474 0.0245060 84.536 < 2e-16 ***
origin_hex1666 0.8970361 0.0251115 35.722 < 2e-16 ***
origin_hex1667 1.8748937 0.0262552 71.410 < 2e-16 ***
origin_hex1668 2.0541742 0.0246170 83.445 < 2e-16 ***
origin_hex1670 2.7042151 0.0244288 110.698 < 2e-16 ***
origin_hex1671 3.2791978 0.0246978 132.773 < 2e-16 ***
origin_hex1672 2.1348133 0.0248363 85.955 < 2e-16 ***
origin_hex1684 1.1105385 0.0268512 41.359 < 2e-16 ***
origin_hex1685 1.7821906 0.0247417 72.032 < 2e-16 ***
origin_hex1686 1.6402388 0.0247494 66.274 < 2e-16 ***
origin_hex1687 1.4411268 0.0252179 57.147 < 2e-16 ***
origin_hex1688 0.7945171 0.0255104 31.145 < 2e-16 ***
origin_hex1689 0.2612083 0.0269301 9.699 < 2e-16 ***
origin_hex1690 1.7842485 0.0250068 71.351 < 2e-16 ***
origin_hex1691 2.3393047 0.0245719 95.202 < 2e-16 ***
origin_hex1692 1.2142556 0.0254261 47.756 < 2e-16 ***
origin_hex1706 1.7493220 0.0249337 70.159 < 2e-16 ***
origin_hex1707 1.4742516 0.0246855 59.721 < 2e-16 ***
origin_hex1708 2.2339030 0.0245281 91.075 < 2e-16 ***
origin_hex1709 1.1728924 0.0250491 46.824 < 2e-16 ***
origin_hex1710 2.3600629 0.0245406 96.170 < 2e-16 ***
origin_hex1711 2.0214924 0.0246670 81.951 < 2e-16 ***
origin_hex1712 2.6826027 0.0244257 109.827 < 2e-16 ***
origin_hex1713 0.0860910 0.0271115 3.175 0.001496 **
origin_hex1714 2.3326583 0.0246127 94.775 < 2e-16 ***
origin_hex172 -0.0075079 0.0796004 -0.094 0.924856
origin_hex1727 1.8732881 0.0247309 75.747 < 2e-16 ***
origin_hex1728 1.8018078 0.0246471 73.104 < 2e-16 ***
origin_hex1729 1.2934965 0.0248150 52.126 < 2e-16 ***
origin_hex1730 -0.5165967 0.0313702 -16.468 < 2e-16 ***
origin_hex1731 1.7392638 0.0247741 70.205 < 2e-16 ***
origin_hex1732 2.4177908 0.0244686 98.812 < 2e-16 ***
origin_hex1733 2.0698033 0.0245972 84.148 < 2e-16 ***
origin_hex1734 1.9634097 0.0245637 79.931 < 2e-16 ***
origin_hex1735 2.6538870 0.0248586 106.760 < 2e-16 ***
origin_hex174 -1.6754749 0.0522533 -32.065 < 2e-16 ***
origin_hex1748 0.6677135 0.0258774 25.803 < 2e-16 ***
origin_hex1749 1.4664116 0.0246954 59.380 < 2e-16 ***
origin_hex175 0.6850372 0.0262486 26.098 < 2e-16 ***
origin_hex1750 0.7063964 0.0252243 28.005 < 2e-16 ***
origin_hex1751 0.4817352 0.0263549 18.279 < 2e-16 ***
origin_hex1753 2.3620423 0.0245000 96.410 < 2e-16 ***
origin_hex1754 2.5903613 0.0244255 106.051 < 2e-16 ***
origin_hex1755 2.0143111 0.0245861 81.929 < 2e-16 ***
origin_hex1756 1.7306927 0.0247484 69.932 < 2e-16 ***
origin_hex1757 -0.9450942 0.0343727 -27.495 < 2e-16 ***
origin_hex176 1.8718697 0.0249587 74.999 < 2e-16 ***
origin_hex1769 1.5006695 0.0248492 60.391 < 2e-16 ***
origin_hex1770 1.2100794 0.0260079 46.527 < 2e-16 ***
origin_hex1771 0.3575839 0.0261342 13.683 < 2e-16 ***
origin_hex1772 0.2762469 0.0336056 8.220 < 2e-16 ***
origin_hex1774 2.0934424 0.0245677 85.211 < 2e-16 ***
origin_hex1775 1.6085840 0.0247836 64.905 < 2e-16 ***
origin_hex1776 2.4788816 0.0244382 101.435 < 2e-16 ***
origin_hex1777 2.4490434 0.0245061 99.936 < 2e-16 ***
origin_hex1778 1.1526714 0.0259210 44.469 < 2e-16 ***
origin_hex1790 2.0622359 0.0246658 83.607 < 2e-16 ***
origin_hex1791 1.2993466 0.0249912 51.992 < 2e-16 ***
origin_hex1792 1.6507534 0.0250400 65.925 < 2e-16 ***
origin_hex1793 -0.3877622 0.0276445 -14.027 < 2e-16 ***
origin_hex1794 0.1572087 0.0365420 4.302 1.69e-05 ***
origin_hex1795 -0.9912294 0.0407102 -24.348 < 2e-16 ***
origin_hex1796 2.4004201 0.0245518 97.770 < 2e-16 ***
origin_hex1797 2.3530255 0.0245054 96.021 < 2e-16 ***
origin_hex1798 2.4536114 0.0245069 100.119 < 2e-16 ***
origin_hex1799 0.9217268 0.0255342 36.098 < 2e-16 ***
origin_hex1800 -1.5450777 0.0361540 -42.736 < 2e-16 ***
origin_hex1811 1.4293518 0.0252335 56.645 < 2e-16 ***
origin_hex1812 2.3678770 0.0244663 96.781 < 2e-16 ***
origin_hex1813 2.0795360 0.0245072 84.854 < 2e-16 ***
origin_hex1817 2.0196173 0.0247466 81.612 < 2e-16 ***
origin_hex1818 2.1476130 0.0245799 87.373 < 2e-16 ***
origin_hex1819 2.3978398 0.0244761 97.967 < 2e-16 ***
origin_hex1820 -0.8280675 0.0407674 -20.312 < 2e-16 ***
origin_hex1832 1.9214133 0.0247477 77.640 < 2e-16 ***
origin_hex1833 1.4660489 0.0248948 58.890 < 2e-16 ***
origin_hex1834 1.8399694 0.0246189 74.738 < 2e-16 ***
origin_hex1835 1.1412603 0.0252629 45.175 < 2e-16 ***
origin_hex1837 -1.4633134 0.0654141 -22.370 < 2e-16 ***
origin_hex1839 1.6243337 0.0250595 64.819 < 2e-16 ***
origin_hex1840 3.2779039 0.0243620 134.550 < 2e-16 ***
origin_hex1841 -1.1408817 0.0420178 -27.152 < 2e-16 ***
origin_hex1842 1.2269591 0.0263349 46.591 < 2e-16 ***
origin_hex1853 1.8229167 0.0246920 73.826 < 2e-16 ***
origin_hex1854 2.2035891 0.0246283 89.474 < 2e-16 ***
origin_hex1855 2.2507660 0.0245483 91.687 < 2e-16 ***
origin_hex1858 0.1435487 0.0349610 4.106 4.03e-05 ***
origin_hex1860 2.8281567 0.0255325 110.767 < 2e-16 ***
origin_hex1861 2.1134087 0.0246074 85.885 < 2e-16 ***
origin_hex1874 2.1826200 0.0249032 87.644 < 2e-16 ***
origin_hex1875 0.4631330 0.0271501 17.058 < 2e-16 ***
origin_hex1876 2.3831114 0.0260438 91.504 < 2e-16 ***
origin_hex1877 1.9026557 0.0246555 77.170 < 2e-16 ***
origin_hex1880 -1.1402046 0.0560937 -20.327 < 2e-16 ***
origin_hex1882 2.1598338 0.0246759 87.528 < 2e-16 ***
origin_hex1883 1.8661352 0.0256649 72.712 < 2e-16 ***
origin_hex1895 2.1354329 0.0246405 86.664 < 2e-16 ***
origin_hex1896 0.5597497 0.0260478 21.489 < 2e-16 ***
origin_hex1897 1.4094249 0.0257150 54.810 < 2e-16 ***
origin_hex1898 -3.3061371 0.1346584 -24.552 < 2e-16 ***
origin_hex1901 -1.2658042 0.0636330 -19.892 < 2e-16 ***
origin_hex1903 1.0383007 0.0256814 40.430 < 2e-16 ***
origin_hex1917 0.8519834 0.0257897 33.036 < 2e-16 ***
origin_hex1918 2.8984835 0.0248319 116.724 < 2e-16 ***
origin_hex1919 1.9852589 0.0247207 80.307 < 2e-16 ***
origin_hex1922 -0.1430547 0.0371579 -3.850 0.000118 ***
origin_hex1924 0.7839374 0.0258462 30.331 < 2e-16 ***
origin_hex1937 1.4257258 0.0250933 56.817 < 2e-16 ***
origin_hex1938 2.2078071 0.0245897 89.786 < 2e-16 ***
origin_hex1939 3.0505337 0.0245212 124.404 < 2e-16 ***
origin_hex1942 -1.3176469 0.0527897 -24.960 < 2e-16 ***
origin_hex195 -2.1584408 0.0844110 -25.571 < 2e-16 ***
origin_hex1959 1.1828376 0.0256053 46.195 < 2e-16 ***
origin_hex196 -1.5936860 0.0484110 -32.920 < 2e-16 ***
origin_hex1960 3.0019627 0.0243717 123.174 < 2e-16 ***
origin_hex1961 1.7388923 0.0250985 69.283 < 2e-16 ***
origin_hex1962 2.5614102 0.0245679 104.258 < 2e-16 ***
origin_hex1964 -2.2508836 0.0913286 -24.646 < 2e-16 ***
origin_hex197 -2.1695370 0.1124162 -19.299 < 2e-16 ***
origin_hex1979 1.3378464 0.0253743 52.725 < 2e-16 ***
origin_hex1980 -0.0627252 0.0277126 -2.263 0.023610 *
origin_hex1981 2.4441162 0.0245709 99.472 < 2e-16 ***
origin_hex1982 1.1981101 0.0264434 45.308 < 2e-16 ***
origin_hex1983 2.6884166 0.0245698 109.420 < 2e-16 ***
origin_hex1984 1.4431275 0.0252687 57.111 < 2e-16 ***
origin_hex1985 1.7619358 0.0249600 70.590 < 2e-16 ***
origin_hex2001 1.7023603 0.0248671 68.458 < 2e-16 ***
origin_hex2002 2.4141544 0.0244882 98.584 < 2e-16 ***
origin_hex2003 2.0011659 0.0247025 81.011 < 2e-16 ***
origin_hex2004 2.8890242 0.0245364 117.744 < 2e-16 ***
origin_hex2005 2.6961429 0.0245409 109.863 < 2e-16 ***
origin_hex2006 1.2504322 0.0258235 48.422 < 2e-16 ***
origin_hex2007 0.0961059 0.0288412 3.332 0.000861 ***
origin_hex2022 2.3587357 0.0248457 94.935 < 2e-16 ***
origin_hex2023 2.6767884 0.0244736 109.374 < 2e-16 ***
origin_hex2024 2.0506134 0.0246388 83.227 < 2e-16 ***
origin_hex2025 2.3127609 0.0246170 93.950 < 2e-16 ***
origin_hex2026 0.9264480 0.0267434 34.642 < 2e-16 ***
origin_hex2027 1.8922511 0.0245175 77.180 < 2e-16 ***
origin_hex2043 1.2929469 0.0253072 51.090 < 2e-16 ***
origin_hex2044 2.3628589 0.0245527 96.236 < 2e-16 ***
origin_hex2045 -2.0594812 0.0781914 -26.339 < 2e-16 ***
origin_hex2046 2.3478809 0.0245014 95.827 < 2e-16 ***
origin_hex2047 2.3041964 0.0247105 93.248 < 2e-16 ***
origin_hex2048 2.4329217 0.0246161 98.835 < 2e-16 ***
origin_hex2049 -0.5247959 0.0277140 -18.936 < 2e-16 ***
origin_hex2064 2.3278853 0.0246574 94.409 < 2e-16 ***
origin_hex2065 0.9218240 0.0255346 36.101 < 2e-16 ***
origin_hex2066 1.0033395 0.0316983 31.653 < 2e-16 ***
origin_hex2067 3.2875257 0.0243498 135.012 < 2e-16 ***
origin_hex2068 2.6629861 0.0250945 106.118 < 2e-16 ***
origin_hex2069 1.9234377 0.0247835 77.610 < 2e-16 ***
origin_hex2085 0.7444510 0.0258729 28.773 < 2e-16 ***
origin_hex2086 2.5350924 0.0245216 103.382 < 2e-16 ***
origin_hex2087 1.3514476 0.0251945 53.641 < 2e-16 ***
origin_hex2088 2.0826128 0.0246080 84.631 < 2e-16 ***
origin_hex2089 1.5534674 0.0250180 62.094 < 2e-16 ***
origin_hex2090 2.8204600 0.0244359 115.423 < 2e-16 ***
origin_hex2091 -1.9395889 0.0720928 -26.904 < 2e-16 ***
origin_hex2105 -1.2072495 0.1038905 -11.620 < 2e-16 ***
origin_hex2106 -0.3160206 0.0305463 -10.346 < 2e-16 ***
origin_hex2107 0.5966411 0.0258319 23.097 < 2e-16 ***
origin_hex2108 2.0266137 0.0247688 81.821 < 2e-16 ***
origin_hex2109 1.9839842 0.0245987 80.654 < 2e-16 ***
origin_hex2110 1.7207412 0.0252001 68.283 < 2e-16 ***
origin_hex2111 -0.8304882 0.0460739 -18.025 < 2e-16 ***
origin_hex2128 0.5574364 0.0273875 20.354 < 2e-16 ***
origin_hex2129 0.0849533 0.0281293 3.020 0.002527 **
origin_hex2130 2.0797930 0.0244996 84.891 < 2e-16 ***
origin_hex2131 2.3922485 0.0245848 97.306 < 2e-16 ***
origin_hex2132 1.9024660 0.0248837 76.454 < 2e-16 ***
origin_hex2148 1.0522235 0.0265156 39.683 < 2e-16 ***
origin_hex2149 -0.1395795 0.0286398 -4.874 1.10e-06 ***
origin_hex215 -1.6669262 0.0859771 -19.388 < 2e-16 ***
origin_hex2150 1.8275647 0.0246018 74.286 < 2e-16 ***
origin_hex2151 2.7607038 0.0244354 112.980 < 2e-16 ***
origin_hex2152 2.8886769 0.0244756 118.022 < 2e-16 ***
origin_hex2153 2.0707230 0.0247940 83.517 < 2e-16 ***
origin_hex216 2.6724212 0.0247667 107.904 < 2e-16 ***
origin_hex217 -0.9757340 0.0316547 -30.824 < 2e-16 ***
origin_hex2171 1.4301856 0.0251523 56.861 < 2e-16 ***
origin_hex2172 1.9110394 0.0253564 75.367 < 2e-16 ***
origin_hex2173 1.9459471 0.0247163 78.731 < 2e-16 ***
origin_hex2174 2.3182855 0.0247180 93.789 < 2e-16 ***
origin_hex2191 1.0473898 0.0261373 40.073 < 2e-16 ***
origin_hex2192 0.5357768 0.0264220 20.278 < 2e-16 ***
origin_hex2193 1.7692774 0.0248884 71.089 < 2e-16 ***
origin_hex2194 2.0265991 0.0246933 82.071 < 2e-16 ***
origin_hex2195 1.8338960 0.0312866 58.616 < 2e-16 ***
origin_hex2212 -1.0615745 0.0834168 -12.726 < 2e-16 ***
origin_hex2213 -1.7674708 0.0450782 -39.209 < 2e-16 ***
origin_hex2214 -0.1016271 0.0341427 -2.977 0.002915 **
origin_hex2215 1.6648637 0.0250317 66.510 < 2e-16 ***
origin_hex2216 0.9465968 0.0263741 35.891 < 2e-16 ***
origin_hex2233 -1.4063157 0.0456495 -30.807 < 2e-16 ***
origin_hex2234 -0.1666826 0.0309422 -5.387 7.17e-08 ***
origin_hex2235 0.5425173 0.0273453 19.840 < 2e-16 ***
origin_hex2236 0.5787772 0.0272235 21.260 < 2e-16 ***
origin_hex2237 -1.4470707 0.0586355 -24.679 < 2e-16 ***
origin_hex2256 -2.1189734 0.0556937 -38.047 < 2e-16 ***
origin_hex2257 -0.0536310 0.0303258 -1.768 0.076979 .
origin_hex2258 -0.4011252 0.0298273 -13.448 < 2e-16 ***
origin_hex2259 -0.6464485 0.0425994 -15.175 < 2e-16 ***
origin_hex2277 -0.2807268 0.0460474 -6.096 1.08e-09 ***
origin_hex2278 0.5170458 0.0283666 18.227 < 2e-16 ***
origin_hex2279 -0.2399150 0.0307183 -7.810 5.71e-15 ***
origin_hex2280 -2.4656806 0.1033925 -23.848 < 2e-16 ***
origin_hex2297 1.8739172 0.0257081 72.892 < 2e-16 ***
origin_hex23 -1.0297658 0.1014783 -10.148 < 2e-16 ***
origin_hex2300 -1.7722627 0.0642070 -27.602 < 2e-16 ***
origin_hex2301 -0.1714057 0.0302352 -5.669 1.44e-08 ***
origin_hex2318 0.1491372 0.0302088 4.937 7.94e-07 ***
origin_hex2319 1.2555021 0.0261455 48.020 < 2e-16 ***
origin_hex2322 0.8063213 0.0269649 29.903 < 2e-16 ***
origin_hex2337 2.0463763 0.0285311 71.724 < 2e-16 ***
origin_hex2341 1.7962855 0.0257698 69.705 < 2e-16 ***
origin_hex2343 0.4849166 0.0278982 17.382 < 2e-16 ***
origin_hex2361 1.1885320 0.0263314 45.137 < 2e-16 ***
origin_hex2364 -1.9770597 0.0688355 -28.722 < 2e-16 ***
origin_hex237 -2.6938760 0.1580490 -17.045 < 2e-16 ***
origin_hex2379 1.8772561 0.0295996 63.422 < 2e-16 ***
origin_hex238 -1.4993988 0.0565100 -26.533 < 2e-16 ***
origin_hex2384 1.1681416 0.0281194 41.542 < 2e-16 ***
origin_hex239 -2.3911291 0.1599662 -14.948 < 2e-16 ***
origin_hex2405 0.8798939 0.0280445 31.375 < 2e-16 ***
origin_hex2406 -0.6810551 0.0410102 -16.607 < 2e-16 ***
origin_hex2426 1.4116334 0.0356982 39.544 < 2e-16 ***
origin_hex2427 1.6500750 0.0263297 62.670 < 2e-16 ***
origin_hex2505 1.1732800 0.0436042 26.908 < 2e-16 ***
origin_hex257 -1.6669145 0.0614326 -27.134 < 2e-16 ***
origin_hex258 -0.9983065 0.0363431 -27.469 < 2e-16 ***
origin_hex259 -1.3494617 0.0470103 -28.706 < 2e-16 ***
origin_hex278 -0.2508771 0.0453375 -5.534 3.14e-08 ***
origin_hex279 -1.7512839 0.0492015 -35.594 < 2e-16 ***
origin_hex280 -1.7090250 0.0512431 -33.351 < 2e-16 ***
origin_hex298 -3.6650928 0.3342161 -10.966 < 2e-16 ***
origin_hex299 -1.7456960 0.0551918 -31.630 < 2e-16 ***
origin_hex300 1.4596597 0.0257109 56.772 < 2e-16 ***
origin_hex320 -1.6652658 0.0681014 -24.453 < 2e-16 ***
origin_hex321 -1.1381095 0.0750995 -15.155 < 2e-16 ***
origin_hex322 -0.4385621 0.0526099 -8.336 < 2e-16 ***
origin_hex340 -0.3149927 0.0364508 -8.642 < 2e-16 ***
origin_hex341 -1.9541218 0.0503858 -38.783 < 2e-16 ***
origin_hex342 -1.3371274 0.0477334 -28.012 < 2e-16 ***
origin_hex363 -0.3962415 0.0441781 -8.969 < 2e-16 ***
origin_hex364 -0.0984321 0.0358740 -2.744 0.006073 **
origin_hex383 -0.6992145 0.0394623 -17.719 < 2e-16 ***
origin_hex384 -3.4229802 0.0574444 -59.588 < 2e-16 ***
origin_hex385 -0.5155180 0.0519929 -9.915 < 2e-16 ***
origin_hex404 0.1029474 0.0417117 2.468 0.013584 *
origin_hex405 -1.2700627 0.0542934 -23.393 < 2e-16 ***
origin_hex406 2.7457500 0.0243898 112.578 < 2e-16 ***
origin_hex407 -0.5843663 0.0514036 -11.368 < 2e-16 ***
origin_hex408 0.2474973 0.0332047 7.454 9.08e-14 ***
origin_hex425 -2.3089189 0.0913289 -25.281 < 2e-16 ***
origin_hex426 -1.0282773 0.0381362 -26.963 < 2e-16 ***
origin_hex427 -1.2911206 0.0428842 -30.107 < 2e-16 ***
origin_hex428 -1.6426767 0.0815448 -20.144 < 2e-16 ***
origin_hex429 0.5980785 0.0331066 18.065 < 2e-16 ***
origin_hex44 -3.2117191 0.1407810 -22.814 < 2e-16 ***
origin_hex446 -1.0351350 0.0635396 -16.291 < 2e-16 ***
origin_hex447 -1.4580302 0.0506498 -28.787 < 2e-16 ***
origin_hex448 -0.4238060 0.0368807 -11.491 < 2e-16 ***
origin_hex449 1.7670916 0.0249828 70.732 < 2e-16 ***
origin_hex450 0.3339446 0.0310992 10.738 < 2e-16 ***
origin_hex46 -1.8508229 0.0906803 -20.410 < 2e-16 ***
origin_hex468 -0.1681665 0.0367133 -4.581 4.64e-06 ***
origin_hex469 0.0294189 0.0298600 0.985 0.324512
origin_hex470 2.5076276 0.0246463 101.745 < 2e-16 ***
origin_hex471 0.8511944 0.0290079 29.343 < 2e-16 ***
origin_hex488 -1.5564748 0.0622783 -24.992 < 2e-16 ***
origin_hex489 -3.2117514 0.2511752 -12.787 < 2e-16 ***
origin_hex490 1.0886620 0.0267801 40.652 < 2e-16 ***
origin_hex491 1.2365224 0.0253193 48.837 < 2e-16 ***
origin_hex493 -3.0264202 0.1407825 -21.497 < 2e-16 ***
origin_hex494 -0.9896145 0.0636329 -15.552 < 2e-16 ***
origin_hex509 -0.7421607 0.0415228 -17.874 < 2e-16 ***
origin_hex510 -0.2611826 0.0345181 -7.567 3.83e-14 ***
origin_hex511 0.5828642 0.0264391 22.046 < 2e-16 ***
origin_hex512 2.9598107 0.0244402 121.104 < 2e-16 ***
origin_hex513 -0.2851695 0.0340645 -8.371 < 2e-16 ***
origin_hex514 -0.3836016 0.0440073 -8.717 < 2e-16 ***
origin_hex515 -2.6869333 0.1394878 -19.263 < 2e-16 ***
origin_hex530 -1.7425731 0.0844097 -20.644 < 2e-16 ***
origin_hex531 -0.3469427 0.0315010 -11.014 < 2e-16 ***
origin_hex532 -0.5124109 0.0333650 -15.358 < 2e-16 ***
origin_hex533 2.9330131 0.0244481 119.969 < 2e-16 ***
origin_hex534 3.4920284 0.0244888 142.597 < 2e-16 ***
origin_hex536 -0.1157727 0.0348135 -3.326 0.000883 ***
origin_hex537 -2.5045914 0.1394879 -17.956 < 2e-16 ***
origin_hex538 -2.7756458 0.2055618 -13.503 < 2e-16 ***
origin_hex539 -5.0291299 0.5778601 -8.703 < 2e-16 ***
origin_hex551 -1.6093486 0.0591275 -27.218 < 2e-16 ***
origin_hex552 0.4588130 0.0437636 10.484 < 2e-16 ***
origin_hex553 -0.7090617 0.0307319 -23.073 < 2e-16 ***
origin_hex554 2.8169835 0.0244858 115.046 < 2e-16 ***
origin_hex555 2.3278954 0.0251373 92.607 < 2e-16 ***
origin_hex559 -1.9550151 0.0963565 -20.289 < 2e-16 ***
origin_hex560 -0.1397139 0.0531610 -2.628 0.008586 **
origin_hex572 -3.7995270 0.2249200 -16.893 < 2e-16 ***
origin_hex573 -1.0955272 0.0497935 -22.001 < 2e-16 ***
origin_hex574 -0.4555562 0.0434485 -10.485 < 2e-16 ***
origin_hex575 3.7613865 0.0243241 154.636 < 2e-16 ***
origin_hex576 2.6070080 0.0246906 105.587 < 2e-16 ***
origin_hex578 -2.5144304 0.1099236 -22.874 < 2e-16 ***
origin_hex582 -2.3340725 0.1093278 -21.349 < 2e-16 ***
origin_hex583 -3.0168851 0.1976119 -15.267 < 2e-16 ***
origin_hex584 -0.1159236 0.0601605 -1.927 0.053992 .
origin_hex593 -1.2831452 0.0550819 -23.295 < 2e-16 ***
origin_hex594 -0.0581143 0.0354174 -1.641 0.100831
origin_hex595 -0.5434665 0.0312471 -17.393 < 2e-16 ***
origin_hex596 2.4020744 0.0245850 97.705 < 2e-16 ***
origin_hex597 -0.9546508 0.0636331 -15.002 < 2e-16 ***
origin_hex603 -2.0913294 0.1111469 -18.816 < 2e-16 ***
origin_hex604 -3.7285232 0.2683608 -13.894 < 2e-16 ***
origin_hex615 -1.7206821 0.0501210 -34.331 < 2e-16 ***
origin_hex616 -0.5596425 0.0377790 -14.814 < 2e-16 ***
origin_hex617 0.2384991 0.0297881 8.007 1.18e-15 ***
origin_hex618 2.7815904 0.0245017 113.527 < 2e-16 ***
origin_hex620 -0.5688224 0.0404076 -14.077 < 2e-16 ***
origin_hex637 -1.1639594 0.0460741 -25.263 < 2e-16 ***
origin_hex638 2.5105192 0.0245595 102.222 < 2e-16 ***
origin_hex657 0.1912612 0.0290919 6.574 4.89e-11 ***
origin_hex658 1.7005108 0.0250189 67.969 < 2e-16 ***
origin_hex659 2.0794393 0.0247947 83.866 < 2e-16 ***
origin_hex66 -2.1422479 0.1273342 -16.824 < 2e-16 ***
origin_hex660 3.1227237 0.0244316 127.815 < 2e-16 ***
origin_hex662 2.3871481 0.0252242 94.637 < 2e-16 ***
origin_hex67 -0.1423652 0.0347114 -4.101 4.11e-05 ***
origin_hex677 -0.0407275 0.0329672 -1.235 0.216684
origin_hex678 -1.7046093 0.0498657 -34.184 < 2e-16 ***
origin_hex679 2.8590297 0.0244765 116.807 < 2e-16 ***
origin_hex68 -2.5431705 0.1313616 -19.360 < 2e-16 ***
origin_hex680 3.0885140 0.0244714 126.209 < 2e-16 ***
origin_hex681 2.3510160 0.0256078 91.809 < 2e-16 ***
origin_hex699 -0.1204823 0.0327079 -3.684 0.000230 ***
origin_hex700 1.8953022 0.0249491 75.967 < 2e-16 ***
origin_hex701 1.9596770 0.0249678 78.488 < 2e-16 ***
origin_hex702 2.9741550 0.0244601 121.592 < 2e-16 ***
origin_hex704 -0.5314481 0.0400521 -13.269 < 2e-16 ***
origin_hex722 0.0589473 0.0300818 1.960 0.050047 .
origin_hex725 -1.2568030 0.0498287 -25.222 < 2e-16 ***
origin_hex741 0.4956821 0.0291744 16.990 < 2e-16 ***
origin_hex743 0.2289582 0.0271407 8.436 < 2e-16 ***
origin_hex744 2.4340131 0.0246142 98.887 < 2e-16 ***
origin_hex761 -0.2064889 0.0363391 -5.682 1.33e-08 ***
origin_hex762 1.9666181 0.0251914 78.067 < 2e-16 ***
origin_hex763 -1.3345699 0.0366952 -36.369 < 2e-16 ***
origin_hex764 2.7396494 0.0244528 112.038 < 2e-16 ***
origin_hex765 1.7563527 0.0255290 68.798 < 2e-16 ***
origin_hex767 3.0552278 0.0244916 124.746 < 2e-16 ***
origin_hex772 -1.7316252 0.0759627 -22.796 < 2e-16 ***
origin_hex784 -0.8734757 0.0337005 -25.919 < 2e-16 ***
origin_hex785 1.9213691 0.0245969 78.114 < 2e-16 ***
origin_hex786 1.5431513 0.0249342 61.889 < 2e-16 ***
origin_hex787 2.0158009 0.0252415 79.861 < 2e-16 ***
origin_hex788 2.4202380 0.0247671 97.720 < 2e-16 ***
origin_hex789 0.4206242 0.0263435 15.967 < 2e-16 ***
origin_hex803 -1.5742601 0.0544462 -28.914 < 2e-16 ***
origin_hex804 2.7035287 0.0245570 110.092 < 2e-16 ***
origin_hex805 2.5126140 0.0244534 102.751 < 2e-16 ***
origin_hex806 2.0853992 0.0245911 84.803 < 2e-16 ***
origin_hex807 2.8276772 0.0245787 115.046 < 2e-16 ***
origin_hex808 1.1195161 0.0265237 42.208 < 2e-16 ***
origin_hex809 2.7952698 0.0244620 114.270 < 2e-16 ***
origin_hex810 2.1473264 0.0248285 86.486 < 2e-16 ***
origin_hex814 -0.2296575 0.0366332 -6.269 3.63e-10 ***
origin_hex819 4.5017378 0.0297306 151.417 < 2e-16 ***
origin_hex824 -0.9213873 0.0453352 -20.324 < 2e-16 ***
origin_hex826 0.2840859 0.0261750 10.853 < 2e-16 ***
origin_hex827 2.3618523 0.0245130 96.351 < 2e-16 ***
origin_hex828 2.4476077 0.0244937 99.928 < 2e-16 ***
origin_hex829 2.5223796 0.0246249 102.432 < 2e-16 ***
origin_hex830 2.6059059 0.0247393 105.335 < 2e-16 ***
origin_hex831 3.2238862 0.0243901 132.180 < 2e-16 ***
origin_hex832 2.2312590 0.0249424 89.456 < 2e-16 ***
origin_hex835 -0.9998291 0.0379675 -26.334 < 2e-16 ***
origin_hex844 -2.3613916 0.0815455 -28.958 < 2e-16 ***
origin_hex846 1.8554558 0.0247565 74.948 < 2e-16 ***
origin_hex847 0.8023819 0.0257802 31.124 < 2e-16 ***
origin_hex848 2.0668426 0.0246737 83.767 < 2e-16 ***
origin_hex849 0.9526082 0.0254189 37.476 < 2e-16 ***
origin_hex850 1.8974201 0.0247955 76.523 < 2e-16 ***
origin_hex851 2.3701747 0.0245622 96.497 < 2e-16 ***
origin_hex852 2.0580008 0.0249389 82.522 < 2e-16 ***
origin_hex853 3.2597557 0.0244864 133.125 < 2e-16 ***
origin_hex854 -0.4587940 0.0354047 -12.959 < 2e-16 ***
origin_hex855 -1.1416993 0.0497213 -22.962 < 2e-16 ***
origin_hex856 -0.2629855 0.0301303 -8.728 < 2e-16 ***
origin_hex86 -1.2263385 0.0774244 -15.839 < 2e-16 ***
origin_hex866 -0.5929302 0.0399504 -14.842 < 2e-16 ***
origin_hex867 0.7480960 0.0269225 27.787 < 2e-16 ***
origin_hex868 -0.0530385 0.0299361 -1.772 0.076441 .
origin_hex869 2.8049562 0.0248892 112.698 < 2e-16 ***
origin_hex87 -1.4849528 0.0846660 -17.539 < 2e-16 ***
origin_hex870 2.9022076 0.0243956 118.964 < 2e-16 ***
origin_hex871 2.2384979 0.0248855 89.952 < 2e-16 ***
origin_hex872 0.6525271 0.0264989 24.625 < 2e-16 ***
origin_hex873 0.9369133 0.0261916 35.771 < 2e-16 ***
origin_hex874 0.6575867 0.0254971 25.791 < 2e-16 ***
origin_hex875 -2.3899351 0.0759632 -31.462 < 2e-16 ***
origin_hex876 -0.9945807 0.0397006 -25.052 < 2e-16 ***
origin_hex877 -1.7722661 0.0467875 -37.879 < 2e-16 ***
origin_hex88 0.4908393 0.0305183 16.083 < 2e-16 ***
origin_hex887 0.4371572 0.0276315 15.821 < 2e-16 ***
origin_hex888 1.7081171 0.0251422 67.938 < 2e-16 ***
origin_hex889 -1.2936854 0.0416151 -31.087 < 2e-16 ***
origin_hex89 -1.1587509 0.0551926 -20.995 < 2e-16 ***
origin_hex890 2.4484700 0.0244857 99.996 < 2e-16 ***
origin_hex891 0.7771021 0.0266454 29.165 < 2e-16 ***
origin_hex893 2.4445028 0.0245245 99.676 < 2e-16 ***
origin_hex894 0.5112246 0.0265117 19.283 < 2e-16 ***
origin_hex895 0.1346563 0.0285224 4.721 2.35e-06 ***
origin_hex896 -0.3852104 0.0350069 -11.004 < 2e-16 ***
origin_hex897 -2.1058683 0.0683418 -30.814 < 2e-16 ***
origin_hex898 -0.6090592 0.0378157 -16.106 < 2e-16 ***
origin_hex90 -2.3849768 0.1346584 -17.711 < 2e-16 ***
origin_hex908 1.3033567 0.0269399 48.380 < 2e-16 ***
origin_hex909 1.6405595 0.0248380 66.050 < 2e-16 ***
origin_hex910 -0.2333915 0.0296477 -7.872 3.49e-15 ***
origin_hex911 1.0199572 0.0256707 39.732 < 2e-16 ***
origin_hex912 2.1227281 0.0245752 86.377 < 2e-16 ***
origin_hex915 2.3497880 0.0245751 95.617 < 2e-16 ***
origin_hex917 1.6357916 0.0252458 64.795 < 2e-16 ***
origin_hex918 -1.4039549 0.0434665 -32.300 < 2e-16 ***
origin_hex919 1.1596518 0.0257793 44.984 < 2e-16 ***
origin_hex928 0.6220744 0.0276070 22.533 < 2e-16 ***
origin_hex929 2.1095589 0.0246145 85.704 < 2e-16 ***
origin_hex930 2.4872498 0.0243981 101.944 < 2e-16 ***
origin_hex931 -0.1920176 0.0293033 -6.553 5.65e-11 ***
origin_hex932 0.2336480 0.0297760 7.847 4.27e-15 ***
origin_hex933 2.1483979 0.0248167 86.571 < 2e-16 ***
origin_hex934 -0.4345971 0.0296290 -14.668 < 2e-16 ***
origin_hex935 3.0978178 0.0243948 126.987 < 2e-16 ***
origin_hex938 -3.8372164 0.2145778 -17.883 < 2e-16 ***
origin_hex939 3.0555964 0.0244839 124.800 < 2e-16 ***
origin_hex940 -2.0763301 0.0650026 -31.942 < 2e-16 ***
origin_hex949 0.4907256 0.0272477 18.010 < 2e-16 ***
origin_hex950 2.3248232 0.0246639 94.260 < 2e-16 ***
origin_hex951 3.1232486 0.0243559 128.234 < 2e-16 ***
origin_hex952 0.3744268 0.0319318 11.726 < 2e-16 ***
origin_hex953 1.2564945 0.0259142 48.487 < 2e-16 ***
origin_hex954 -0.4135686 0.0293012 -14.114 < 2e-16 ***
origin_hex955 1.7459891 0.0248226 70.339 < 2e-16 ***
origin_hex956 0.3503303 0.0266931 13.124 < 2e-16 ***
origin_hex957 2.2761950 0.0248147 91.728 < 2e-16 ***
origin_hex959 -0.7186104 0.0540868 -13.286 < 2e-16 ***
origin_hex961 -1.0733006 0.0383511 -27.986 < 2e-16 ***
origin_hex962 5.3400397 0.0245500 217.517 < 2e-16 ***
origin_hex970 1.1059920 0.0254284 43.494 < 2e-16 ***
origin_hex971 2.3095256 0.0244917 94.298 < 2e-16 ***
origin_hex972 1.8234786 0.0246442 73.992 < 2e-16 ***
origin_hex974 1.3170667 0.0252457 52.170 < 2e-16 ***
origin_hex975 1.0028160 0.0257236 38.984 < 2e-16 ***
origin_hex976 -0.4386002 0.0293625 -14.937 < 2e-16 ***
origin_hex977 2.7632484 0.0244774 112.890 < 2e-16 ***
origin_hex978 0.8637671 0.0251377 34.361 < 2e-16 ***
origin_hex982 0.2767054 0.0280697 9.858 < 2e-16 ***
origin_hex983 4.1655581 0.0244616 170.290 < 2e-16 ***
origin_hex984 5.0275855 0.0244660 205.493 < 2e-16 ***
origin_hex991 0.8829883 0.0257181 34.333 < 2e-16 ***
origin_hex992 1.4736751 0.0251163 58.674 < 2e-16 ***
origin_hex993 1.0445455 0.0252650 41.344 < 2e-16 ***
origin_hex994 0.4428299 0.0264828 16.721 < 2e-16 ***
origin_hex995 1.8541296 0.0248052 74.748 < 2e-16 ***
origin_hex996 1.0043219 0.0253002 39.696 < 2e-16 ***
origin_hex997 -0.3472078 0.0378250 -9.179 < 2e-16 ***
origin_hex998 2.6941669 0.0245016 109.959 < 2e-16 ***
origin_hex999 1.4142174 0.0247785 57.074 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 40799159 on 64063 degrees of freedom
AIC: 41157502
Number of Fisher Scoring iterations: 7
Code
CalcRSquared(orcSIM2$data$trips, orcSIM2$fitted.values)
[1] 0.2495688
- glm from stats R package is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution. In this code, it’s applied to the
trips
as the response variable and a set of predictor variables in thefinal_df
data frame. - The formula
trips ~ log(push_num_bus_stops) + log(push_trainexit_count) + log(push_est_pop) + log(distance) + destination_hex
specifies thattrips
is modeled as a function ofpush_num_bus_stops
,push_trainexit_count
,push_est_pop
,distance
, anddestination_hex
. Thelog
function is applied to transform the predictor variables. - The argument
family = poisson(link = "log")
specifies that a Poisson regression model is fitted with a log link function. - The argument
na.action = na.exclude
specifies that any missing values should be excluded from the model fitting process. - summary from base R package is used to produce result summaries of the results of various model fitting functions. In this code, it’s applied to the fitted model
decSIM2
to obtain a summary of the model fit. CalcRSquared
is a user-defined function which is used to calculate the R-squared value of the fitted model. It takes the observed valuesdecSIM2$data$trips
and the fitted valuesdecSIM2$fitted.values
as inputs.
Key Coefficients: The Poisson regression model reveals insights into the relationship between predictor variables and the logarithm of trip counts. The following coefficients are statistically significant (p < 2e-16), indicating their importance in explaining variations in trip counts:
- Intercept: 13.56
- log(pull_trainexit_count): 0.831
- log(pull_biz_count): 0.0971
- log(pull_entertn_count): -0.1845
- log(pull_fnb_count): -0.102
- log(pull_schools_sf_count): 0.2595
- log(distance): -1.2396
- origin_hex1003: 2.632
- origin_hex1004: 3.491
- origin_hex1011: -0.5583
- origin_hex1012: -0.6222
- origin_hex1013: -0.0155
- origin_hex1014: 0.4643
- origin_hex1015: -0.1897
- and various other dummy origin variables in which many are statistically significant.
Model Fit: The R-squared value for the model is approximately 0.250, indicating that around 25% of the variability in trip counts can be explained by the selected predictor variables. The model’s goodness-of-fit metrics, including the residual deviance and AIC, support its efficacy in capturing patterns within the dataset. Each predictor’s p-value underscores its significance in explaining the observed variation in trip counts. The non-significant p-value like origin_hex1013 suggests that this variable may not be a strong predictor of trip counts in this context.
Destination Constrained
Code
<- glm(formula = trips ~
decSIM2 log(push_num_bus_stops) +
#log(push_station_count) +
log(push_trainexit_count) +
#log(push_hdb_sf_count) +
log(push_est_pop) +
log(distance) +
destination_hex,family = poisson(link = "log"),
data = final_df,
na.action = na.exclude)
summary(decSIM2)
Call:
glm(formula = trips ~ log(push_num_bus_stops) + log(push_trainexit_count) +
log(push_est_pop) + log(distance) + destination_hex, family = poisson(link = "log"),
data = final_df, na.action = na.exclude)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.364e+01 1.545e-02 883.155 < 2e-16 ***
log(push_num_bus_stops) 3.954e-01 4.961e-04 797.004 < 2e-16 ***
log(push_trainexit_count) 2.908e-01 3.254e-04 893.745 < 2e-16 ***
log(push_est_pop) 1.369e-01 7.656e-05 1788.468 < 2e-16 ***
log(distance) -1.254e+00 2.159e-04 -5807.140 < 2e-16 ***
destination_hex1003 1.820e+00 1.559e-02 116.766 < 2e-16 ***
destination_hex1004 9.171e-01 1.595e-02 57.488 < 2e-16 ***
destination_hex1011 -7.199e-02 1.931e-02 -3.727 0.000194 ***
destination_hex1012 1.443e+00 1.634e-02 88.346 < 2e-16 ***
destination_hex1013 5.925e-02 1.700e-02 3.486 0.000490 ***
destination_hex1014 -1.564e+00 2.192e-02 -71.343 < 2e-16 ***
destination_hex1015 1.247e+00 1.583e-02 78.801 < 2e-16 ***
destination_hex1016 1.292e+00 1.572e-02 82.163 < 2e-16 ***
destination_hex1018 -1.958e-01 1.940e-02 -10.091 < 2e-16 ***
destination_hex1019 3.184e-01 1.630e-02 19.538 < 2e-16 ***
destination_hex1023 -6.483e-01 2.001e-02 -32.395 < 2e-16 ***
destination_hex1024 4.190e-01 1.653e-02 25.350 < 2e-16 ***
destination_hex1025 -3.474e+00 6.635e-02 -52.366 < 2e-16 ***
destination_hex1033 4.395e-01 1.665e-02 26.394 < 2e-16 ***
destination_hex1034 1.063e+00 1.591e-02 66.829 < 2e-16 ***
destination_hex1035 8.725e-01 1.597e-02 54.615 < 2e-16 ***
destination_hex1036 1.357e+00 1.574e-02 86.204 < 2e-16 ***
destination_hex1037 1.451e-01 1.640e-02 8.847 < 2e-16 ***
destination_hex1043 5.589e-01 1.867e-02 29.937 < 2e-16 ***
destination_hex1045 2.917e-01 1.631e-02 17.888 < 2e-16 ***
destination_hex1046 9.295e-01 1.627e-02 57.147 < 2e-16 ***
destination_hex1053 9.792e-01 1.597e-02 61.309 < 2e-16 ***
destination_hex1054 7.631e-01 1.603e-02 47.592 < 2e-16 ***
destination_hex1055 -1.033e-01 1.721e-02 -6.001 1.96e-09 ***
destination_hex1056 -8.007e-01 1.875e-02 -42.710 < 2e-16 ***
destination_hex1064 -2.858e+00 8.838e-02 -32.342 < 2e-16 ***
destination_hex1066 1.424e+00 1.575e-02 90.424 < 2e-16 ***
destination_hex1067 1.279e+00 1.652e-02 77.409 < 2e-16 ***
destination_hex1074 -1.111e+00 2.034e-02 -54.609 < 2e-16 ***
destination_hex1075 6.272e-01 1.638e-02 38.280 < 2e-16 ***
destination_hex1076 -7.869e-02 1.665e-02 -4.725 2.30e-06 ***
destination_hex1077 -7.180e-01 1.831e-02 -39.213 < 2e-16 ***
destination_hex1079 3.942e-01 1.632e-02 24.154 < 2e-16 ***
destination_hex1085 -1.087e+00 5.822e-02 -18.673 < 2e-16 ***
destination_hex1087 3.208e-01 1.638e-02 19.584 < 2e-16 ***
destination_hex1088 1.091e+00 1.617e-02 67.460 < 2e-16 ***
destination_hex109 4.893e-01 2.959e-02 16.535 < 2e-16 ***
destination_hex1094 -3.832e+00 5.050e-02 -75.872 < 2e-16 ***
destination_hex1095 1.050e-01 2.024e-02 5.188 2.12e-07 ***
destination_hex1096 -6.710e-02 2.118e-02 -3.168 0.001532 **
destination_hex1097 7.035e-01 1.583e-02 44.450 < 2e-16 ***
destination_hex1098 -1.606e+00 2.641e-02 -60.827 < 2e-16 ***
destination_hex1099 -1.894e-01 1.706e-02 -11.099 < 2e-16 ***
destination_hex110 -2.089e+00 1.017e-01 -20.543 < 2e-16 ***
destination_hex1105 1.677e+00 1.753e-02 95.687 < 2e-16 ***
destination_hex1106 -3.018e+00 8.619e-02 -35.018 < 2e-16 ***
destination_hex1107 1.257e-01 1.692e-02 7.432 1.07e-13 ***
destination_hex1108 2.520e+00 1.542e-02 163.451 < 2e-16 ***
destination_hex1109 -9.888e-01 2.583e-02 -38.278 < 2e-16 ***
destination_hex111 1.446e+00 1.894e-02 76.342 < 2e-16 ***
destination_hex1116 -1.225e-01 1.748e-02 -7.008 2.43e-12 ***
destination_hex1117 2.217e-01 1.671e-02 13.266 < 2e-16 ***
destination_hex1118 -1.601e+00 2.324e-02 -68.896 < 2e-16 ***
destination_hex1119 -8.526e-01 1.834e-02 -46.483 < 2e-16 ***
destination_hex112 -9.961e-01 3.367e-02 -29.581 < 2e-16 ***
destination_hex1120 -1.121e+00 2.251e-02 -49.777 < 2e-16 ***
destination_hex1129 -1.023e-01 1.708e-02 -5.991 2.09e-09 ***
destination_hex1130 5.773e-01 1.621e-02 35.619 < 2e-16 ***
destination_hex1131 1.919e+00 1.607e-02 119.428 < 2e-16 ***
destination_hex1136 9.994e-01 1.596e-02 62.620 < 2e-16 ***
destination_hex1138 -1.080e+00 2.253e-02 -47.963 < 2e-16 ***
destination_hex1139 -4.534e-01 1.673e-02 -27.107 < 2e-16 ***
destination_hex1141 -2.538e-01 1.703e-02 -14.905 < 2e-16 ***
destination_hex1148 -8.993e-01 3.293e-02 -27.313 < 2e-16 ***
destination_hex1149 -3.135e-01 2.010e-02 -15.595 < 2e-16 ***
destination_hex1150 1.389e-02 1.660e-02 0.836 0.402974
destination_hex1151 -1.089e-01 1.654e-02 -6.586 4.52e-11 ***
destination_hex1158 -1.314e+00 1.844e-02 -71.279 < 2e-16 ***
destination_hex1159 -8.539e-01 1.756e-02 -48.623 < 2e-16 ***
destination_hex1160 7.930e-01 1.581e-02 50.167 < 2e-16 ***
destination_hex1171 5.379e-01 1.629e-02 33.018 < 2e-16 ***
destination_hex1172 1.832e+00 1.554e-02 117.938 < 2e-16 ***
destination_hex1173 1.273e+00 1.604e-02 79.414 < 2e-16 ***
destination_hex1174 -1.651e+00 4.413e-02 -37.412 < 2e-16 ***
destination_hex1178 1.129e+00 1.568e-02 71.983 < 2e-16 ***
destination_hex1179 1.933e-01 1.609e-02 12.009 < 2e-16 ***
destination_hex1180 2.706e-01 1.601e-02 16.900 < 2e-16 ***
destination_hex1181 -7.080e-01 1.763e-02 -40.166 < 2e-16 ***
destination_hex1183 8.902e-01 1.598e-02 55.717 < 2e-16 ***
destination_hex1190 -9.508e-01 3.245e-02 -29.300 < 2e-16 ***
destination_hex1192 9.017e-01 1.613e-02 55.919 < 2e-16 ***
destination_hex1193 6.381e-01 1.614e-02 39.537 < 2e-16 ***
destination_hex1194 9.285e-01 1.637e-02 56.730 < 2e-16 ***
destination_hex1200 -1.615e-02 1.674e-02 -0.965 0.334747
destination_hex1201 -3.467e-01 1.687e-02 -20.548 < 2e-16 ***
destination_hex1203 -3.221e-01 1.716e-02 -18.769 < 2e-16 ***
destination_hex1204 -3.952e-01 1.755e-02 -22.520 < 2e-16 ***
destination_hex1211 -4.441e+00 2.778e-01 -15.988 < 2e-16 ***
destination_hex1214 -4.055e-01 1.741e-02 -23.297 < 2e-16 ***
destination_hex1215 2.094e-01 1.872e-02 11.183 < 2e-16 ***
destination_hex1216 6.083e-01 1.819e-02 33.440 < 2e-16 ***
destination_hex1220 2.460e-01 1.639e-02 15.008 < 2e-16 ***
destination_hex1221 5.420e-01 1.581e-02 34.289 < 2e-16 ***
destination_hex1222 -5.863e-01 1.953e-02 -30.018 < 2e-16 ***
destination_hex1223 -8.459e-01 1.880e-02 -44.981 < 2e-16 ***
destination_hex1224 -2.252e-01 1.713e-02 -13.149 < 2e-16 ***
destination_hex1231 -1.629e+00 5.919e-02 -27.521 < 2e-16 ***
destination_hex1232 -2.864e-01 2.876e-02 -9.958 < 2e-16 ***
destination_hex1235 5.580e-01 1.633e-02 34.171 < 2e-16 ***
destination_hex1236 2.950e-01 1.728e-02 17.068 < 2e-16 ***
destination_hex1241 -1.144e+00 1.910e-02 -59.914 < 2e-16 ***
destination_hex1242 -8.900e-01 1.763e-02 -50.493 < 2e-16 ***
destination_hex1243 2.670e-01 1.608e-02 16.603 < 2e-16 ***
destination_hex1246 -5.678e-01 1.741e-02 -32.616 < 2e-16 ***
destination_hex1256 -6.781e-01 1.843e-02 -36.801 < 2e-16 ***
destination_hex1257 7.409e-01 1.642e-02 45.122 < 2e-16 ***
destination_hex1258 1.285e+00 1.611e-02 79.779 < 2e-16 ***
destination_hex1262 -1.191e+00 1.970e-02 -60.455 < 2e-16 ***
destination_hex1263 7.902e-01 1.566e-02 50.455 < 2e-16 ***
destination_hex1264 1.025e-01 1.691e-02 6.062 1.34e-09 ***
destination_hex1265 -2.276e-02 1.707e-02 -1.334 0.182350
destination_hex1266 1.772e-01 1.666e-02 10.636 < 2e-16 ***
destination_hex1267 -1.259e+00 2.218e-02 -56.771 < 2e-16 ***
destination_hex1272 -3.980e+00 1.122e-01 -35.480 < 2e-16 ***
destination_hex1273 5.930e-01 1.682e-02 35.247 < 2e-16 ***
destination_hex1277 6.939e-01 1.588e-02 43.703 < 2e-16 ***
destination_hex1278 4.291e-01 1.642e-02 26.131 < 2e-16 ***
destination_hex128 8.701e-01 2.680e-02 32.471 < 2e-16 ***
destination_hex1283 1.337e+00 1.565e-02 85.407 < 2e-16 ***
destination_hex1284 7.976e-01 1.574e-02 50.659 < 2e-16 ***
destination_hex1285 3.892e-01 1.591e-02 24.464 < 2e-16 ***
destination_hex1286 -5.010e-01 1.804e-02 -27.774 < 2e-16 ***
destination_hex1289 -2.710e+00 4.249e-02 -63.794 < 2e-16 ***
destination_hex129 -2.146e+00 1.136e-01 -18.898 < 2e-16 ***
destination_hex1293 -3.701e+00 7.590e-02 -48.766 < 2e-16 ***
destination_hex1294 3.085e-01 1.746e-02 17.669 < 2e-16 ***
destination_hex1295 -1.774e+00 2.694e-02 -65.855 < 2e-16 ***
destination_hex1298 1.904e-02 1.650e-02 1.154 0.248542
destination_hex1299 -3.049e-01 1.759e-02 -17.334 < 2e-16 ***
destination_hex130 3.691e-01 2.661e-02 13.869 < 2e-16 ***
destination_hex1304 1.629e-01 1.633e-02 9.972 < 2e-16 ***
destination_hex1305 3.402e-01 1.584e-02 21.471 < 2e-16 ***
destination_hex1307 -1.144e+00 2.450e-02 -46.698 < 2e-16 ***
destination_hex1308 2.565e-01 1.620e-02 15.836 < 2e-16 ***
destination_hex131 -1.394e-01 2.875e-02 -4.850 1.23e-06 ***
destination_hex1310 -4.792e+00 1.896e-01 -25.272 < 2e-16 ***
destination_hex1316 -1.346e+00 2.195e-02 -61.298 < 2e-16 ***
destination_hex1317 -1.524e+00 2.010e-02 -75.794 < 2e-16 ***
destination_hex1318 -1.574e+00 2.192e-02 -71.802 < 2e-16 ***
destination_hex1319 1.256e+00 1.566e-02 80.259 < 2e-16 ***
destination_hex132 8.724e-01 2.123e-02 41.101 < 2e-16 ***
destination_hex1320 -8.939e-01 2.030e-02 -44.032 < 2e-16 ***
destination_hex1324 3.803e-01 2.175e-02 17.486 < 2e-16 ***
destination_hex1325 -1.469e+00 2.079e-02 -70.657 < 2e-16 ***
destination_hex1326 -8.771e-02 1.623e-02 -5.404 6.51e-08 ***
destination_hex1327 1.615e-01 1.612e-02 10.019 < 2e-16 ***
destination_hex1328 5.077e-02 1.655e-02 3.068 0.002157 **
destination_hex1329 1.074e-01 1.749e-02 6.142 8.17e-10 ***
destination_hex133 3.963e-01 1.961e-02 20.211 < 2e-16 ***
destination_hex1330 1.315e+00 1.611e-02 81.643 < 2e-16 ***
destination_hex1331 -5.114e+00 2.587e-01 -19.773 < 2e-16 ***
destination_hex1333 -1.728e+00 2.224e-02 -77.715 < 2e-16 ***
destination_hex1334 -1.037e+00 2.007e-02 -51.667 < 2e-16 ***
destination_hex1335 1.023e+00 1.623e-02 63.065 < 2e-16 ***
destination_hex1336 -2.791e+00 5.788e-02 -48.223 < 2e-16 ***
destination_hex1337 -2.541e+00 3.307e-02 -76.828 < 2e-16 ***
destination_hex1338 -2.351e+00 3.067e-02 -76.667 < 2e-16 ***
destination_hex1339 1.071e+00 1.573e-02 68.083 < 2e-16 ***
destination_hex134 1.132e-01 1.919e-02 5.897 3.69e-09 ***
destination_hex1340 -3.359e-01 1.777e-02 -18.906 < 2e-16 ***
destination_hex1341 -3.628e+00 9.744e-02 -37.233 < 2e-16 ***
destination_hex1346 4.403e-02 1.683e-02 2.616 0.008899 **
destination_hex1347 1.020e+00 1.570e-02 64.955 < 2e-16 ***
destination_hex1348 -2.912e-01 1.655e-02 -17.592 < 2e-16 ***
destination_hex1349 7.011e-01 1.614e-02 43.439 < 2e-16 ***
destination_hex1350 -4.462e-01 1.972e-02 -22.630 < 2e-16 ***
destination_hex1353 -2.573e-01 1.669e-02 -15.411 < 2e-16 ***
destination_hex1354 -1.111e+00 1.937e-02 -57.379 < 2e-16 ***
destination_hex1355 -7.977e-01 1.883e-02 -42.368 < 2e-16 ***
destination_hex1357 -1.362e+00 2.405e-02 -56.636 < 2e-16 ***
destination_hex1358 1.073e+00 1.573e-02 68.172 < 2e-16 ***
destination_hex1359 9.121e-03 1.662e-02 0.549 0.583108
destination_hex1360 -3.152e-01 1.693e-02 -18.616 < 2e-16 ***
destination_hex1361 -2.021e-01 1.755e-02 -11.512 < 2e-16 ***
destination_hex1362 -1.814e+00 3.278e-02 -55.350 < 2e-16 ***
destination_hex1368 -8.491e-01 1.766e-02 -48.086 < 2e-16 ***
destination_hex1369 -8.644e-01 1.746e-02 -49.491 < 2e-16 ***
destination_hex1370 8.923e-01 1.571e-02 56.805 < 2e-16 ***
destination_hex1371 -1.724e-02 1.705e-02 -1.011 0.312146
destination_hex1372 4.358e-03 1.678e-02 0.260 0.795130
destination_hex1373 -2.947e+00 3.646e-02 -80.820 < 2e-16 ***
destination_hex1374 -1.697e+00 2.289e-02 -74.119 < 2e-16 ***
destination_hex1375 2.666e-01 1.691e-02 15.766 < 2e-16 ***
destination_hex1376 -1.300e+00 2.272e-02 -57.230 < 2e-16 ***
destination_hex1379 -3.496e+00 6.508e-02 -53.722 < 2e-16 ***
destination_hex1380 1.838e+00 1.551e-02 118.542 < 2e-16 ***
destination_hex1381 2.155e+00 1.546e-02 139.374 < 2e-16 ***
destination_hex1382 1.313e+00 1.589e-02 82.650 < 2e-16 ***
destination_hex1383 -1.466e+00 2.467e-02 -59.417 < 2e-16 ***
destination_hex1388 -2.182e-01 1.653e-02 -13.205 < 2e-16 ***
destination_hex1389 -5.704e-01 1.687e-02 -33.811 < 2e-16 ***
destination_hex1390 -1.887e-01 1.661e-02 -11.363 < 2e-16 ***
destination_hex1391 7.366e-01 1.604e-02 45.927 < 2e-16 ***
destination_hex1392 6.160e-01 1.962e-02 31.400 < 2e-16 ***
destination_hex1393 -7.790e-01 1.750e-02 -44.511 < 2e-16 ***
destination_hex1394 -3.450e-01 1.649e-02 -20.917 < 2e-16 ***
destination_hex1395 -4.384e-01 1.680e-02 -26.096 < 2e-16 ***
destination_hex1396 4.731e-01 1.614e-02 29.312 < 2e-16 ***
destination_hex1397 -7.303e-01 1.704e-02 -42.849 < 2e-16 ***
destination_hex1398 -9.493e-01 2.061e-02 -46.065 < 2e-16 ***
destination_hex1400 -8.260e-01 1.886e-02 -43.794 < 2e-16 ***
destination_hex1401 1.053e+00 1.563e-02 67.338 < 2e-16 ***
destination_hex1402 3.544e-01 1.619e-02 21.890 < 2e-16 ***
destination_hex1404 -1.725e-01 2.661e-02 -6.484 8.96e-11 ***
destination_hex1410 5.515e-01 1.576e-02 35.001 < 2e-16 ***
destination_hex1411 -3.325e-01 1.673e-02 -19.880 < 2e-16 ***
destination_hex1412 5.980e-01 1.582e-02 37.793 < 2e-16 ***
destination_hex1413 2.651e-01 1.619e-02 16.371 < 2e-16 ***
destination_hex1414 -2.926e-01 1.634e-02 -17.902 < 2e-16 ***
destination_hex1415 2.339e-01 1.619e-02 14.446 < 2e-16 ***
destination_hex1416 -5.198e-01 1.706e-02 -30.462 < 2e-16 ***
destination_hex1417 -9.147e-02 1.629e-02 -5.616 1.96e-08 ***
destination_hex1418 -3.177e-02 1.627e-02 -1.953 0.050810 .
destination_hex1419 -4.618e-01 1.710e-02 -27.005 < 2e-16 ***
destination_hex1422 2.183e-01 1.645e-02 13.271 < 2e-16 ***
destination_hex1423 7.811e-01 1.610e-02 48.521 < 2e-16 ***
destination_hex1430 2.007e-01 1.605e-02 12.506 < 2e-16 ***
destination_hex1431 8.229e-01 1.570e-02 52.402 < 2e-16 ***
destination_hex1432 4.702e-01 1.583e-02 29.710 < 2e-16 ***
destination_hex1433 -1.923e-01 1.781e-02 -10.795 < 2e-16 ***
destination_hex1434 6.760e-01 1.580e-02 42.770 < 2e-16 ***
destination_hex1435 2.192e-01 1.598e-02 13.718 < 2e-16 ***
destination_hex1436 -8.665e-01 1.860e-02 -46.592 < 2e-16 ***
destination_hex1437 -3.083e-01 1.654e-02 -18.645 < 2e-16 ***
destination_hex1438 3.632e-01 1.585e-02 22.919 < 2e-16 ***
destination_hex1439 1.115e+00 1.566e-02 71.211 < 2e-16 ***
destination_hex1440 4.581e-01 1.643e-02 27.882 < 2e-16 ***
destination_hex1442 -1.555e+00 2.245e-02 -69.248 < 2e-16 ***
destination_hex1443 2.352e-01 1.633e-02 14.404 < 2e-16 ***
destination_hex1444 1.190e+00 1.634e-02 72.827 < 2e-16 ***
destination_hex1452 7.674e-01 1.562e-02 49.122 < 2e-16 ***
destination_hex1453 2.073e-01 1.606e-02 12.907 < 2e-16 ***
destination_hex1454 -1.056e+00 1.889e-02 -55.915 < 2e-16 ***
destination_hex1455 -1.732e-01 1.678e-02 -10.325 < 2e-16 ***
destination_hex1456 9.445e-02 1.630e-02 5.793 6.92e-09 ***
destination_hex1457 9.639e-01 1.590e-02 60.634 < 2e-16 ***
destination_hex1458 1.657e+00 1.549e-02 106.969 < 2e-16 ***
destination_hex1459 -8.522e-01 1.727e-02 -49.345 < 2e-16 ***
destination_hex1460 4.428e-01 1.587e-02 27.895 < 2e-16 ***
destination_hex1461 2.373e-01 1.659e-02 14.307 < 2e-16 ***
destination_hex1464 -3.074e-01 1.680e-02 -18.302 < 2e-16 ***
destination_hex1465 -4.844e-01 1.848e-02 -26.217 < 2e-16 ***
destination_hex1472 -1.851e-01 1.682e-02 -11.001 < 2e-16 ***
destination_hex1473 7.821e-01 1.571e-02 49.770 < 2e-16 ***
destination_hex1474 5.384e-01 1.566e-02 34.377 < 2e-16 ***
destination_hex1475 5.695e-01 1.582e-02 35.991 < 2e-16 ***
destination_hex1476 -4.076e-01 1.681e-02 -24.244 < 2e-16 ***
destination_hex1477 1.555e+00 1.547e-02 100.508 < 2e-16 ***
destination_hex1478 9.113e-03 1.615e-02 0.564 0.572480
destination_hex1479 -7.330e-01 1.697e-02 -43.186 < 2e-16 ***
destination_hex1480 1.575e+00 1.548e-02 101.744 < 2e-16 ***
destination_hex1481 2.011e-01 1.634e-02 12.308 < 2e-16 ***
destination_hex1482 1.027e+00 1.600e-02 64.200 < 2e-16 ***
destination_hex1485 -9.373e-01 1.966e-02 -47.689 < 2e-16 ***
destination_hex1494 5.122e-01 1.586e-02 32.289 < 2e-16 ***
destination_hex1495 -2.498e-01 1.636e-02 -15.266 < 2e-16 ***
destination_hex1496 -3.775e-02 1.568e-02 -2.408 0.016050 *
destination_hex1497 -4.067e-01 1.688e-02 -24.096 < 2e-16 ***
destination_hex1498 -1.748e-01 1.644e-02 -10.633 < 2e-16 ***
destination_hex1499 1.977e-01 1.591e-02 12.422 < 2e-16 ***
destination_hex150 5.109e-01 2.932e-02 17.427 < 2e-16 ***
destination_hex1500 -2.804e-01 1.739e-02 -16.127 < 2e-16 ***
destination_hex1501 6.340e-01 1.577e-02 40.207 < 2e-16 ***
destination_hex1502 5.355e-01 1.586e-02 33.766 < 2e-16 ***
destination_hex1506 -5.790e+00 6.484e-02 -89.303 < 2e-16 ***
destination_hex151 3.077e-01 2.609e-02 11.795 < 2e-16 ***
destination_hex1515 -7.859e-01 2.050e-02 -38.337 < 2e-16 ***
destination_hex1516 -1.055e-01 1.567e-02 -6.731 1.68e-11 ***
destination_hex1517 -1.626e-01 1.655e-02 -9.826 < 2e-16 ***
destination_hex1518 -6.505e-01 1.712e-02 -37.985 < 2e-16 ***
destination_hex1519 -2.917e-01 1.718e-02 -16.976 < 2e-16 ***
destination_hex152 1.893e+00 2.031e-02 93.222 < 2e-16 ***
destination_hex1520 -4.646e-01 1.670e-02 -27.820 < 2e-16 ***
destination_hex1521 -4.624e-01 1.695e-02 -27.275 < 2e-16 ***
destination_hex1522 3.561e-01 1.600e-02 22.253 < 2e-16 ***
destination_hex1523 1.348e+00 1.586e-02 84.989 < 2e-16 ***
destination_hex1524 -7.197e-01 1.909e-02 -37.700 < 2e-16 ***
destination_hex1527 -2.529e+00 3.236e-02 -78.143 < 2e-16 ***
destination_hex153 4.703e-01 1.978e-02 23.773 < 2e-16 ***
destination_hex1535 -1.490e+00 5.260e-02 -28.317 < 2e-16 ***
destination_hex1536 -1.505e+00 2.646e-02 -56.876 < 2e-16 ***
destination_hex1537 -2.180e-02 1.633e-02 -1.335 0.181968
destination_hex1538 -1.515e-02 1.608e-02 -0.942 0.346006
destination_hex1539 1.898e-01 1.591e-02 11.927 < 2e-16 ***
destination_hex154 -8.620e-01 3.063e-02 -28.142 < 2e-16 ***
destination_hex1540 -3.641e-01 1.641e-02 -22.185 < 2e-16 ***
destination_hex1541 2.411e-02 1.673e-02 1.441 0.149602
destination_hex1542 -5.664e-01 1.796e-02 -31.538 < 2e-16 ***
destination_hex1543 -7.980e-01 2.972e-02 -26.848 < 2e-16 ***
destination_hex1544 -6.261e-01 1.766e-02 -35.456 < 2e-16 ***
destination_hex1547 -6.388e-01 2.123e-02 -30.085 < 2e-16 ***
destination_hex155 -1.271e-01 2.294e-02 -5.542 2.99e-08 ***
destination_hex1556 -1.949e+00 6.089e-02 -32.013 < 2e-16 ***
destination_hex1557 -1.221e+00 2.190e-02 -55.753 < 2e-16 ***
destination_hex1558 3.151e-01 1.960e-02 16.078 < 2e-16 ***
destination_hex1559 5.733e-01 1.574e-02 36.420 < 2e-16 ***
destination_hex156 3.782e-01 2.394e-02 15.794 < 2e-16 ***
destination_hex1560 7.167e-01 1.572e-02 45.595 < 2e-16 ***
destination_hex1561 -3.642e-02 1.652e-02 -2.205 0.027473 *
destination_hex1562 -2.190e+00 2.259e-02 -96.917 < 2e-16 ***
destination_hex1563 -1.088e+00 1.774e-02 -61.362 < 2e-16 ***
destination_hex1564 -4.709e-01 1.727e-02 -27.263 < 2e-16 ***
destination_hex1565 1.097e-01 1.644e-02 6.670 2.56e-11 ***
destination_hex1566 -1.613e+00 2.232e-02 -72.269 < 2e-16 ***
destination_hex1567 -1.033e+00 2.303e-02 -44.844 < 2e-16 ***
destination_hex1568 -2.894e-01 1.941e-02 -14.912 < 2e-16 ***
destination_hex1578 -2.473e+00 1.002e-01 -24.680 < 2e-16 ***
destination_hex1580 -2.447e+00 2.814e-02 -86.973 < 2e-16 ***
destination_hex1581 3.804e-01 1.595e-02 23.849 < 2e-16 ***
destination_hex1582 4.431e-01 1.575e-02 28.131 < 2e-16 ***
destination_hex1583 -1.557e+00 2.505e-02 -62.155 < 2e-16 ***
destination_hex1584 -1.179e+00 1.938e-02 -60.836 < 2e-16 ***
destination_hex1585 -1.084e-01 1.698e-02 -6.386 1.70e-10 ***
destination_hex1586 5.422e-01 1.608e-02 33.725 < 2e-16 ***
destination_hex1589 -1.440e+00 2.643e-02 -54.478 < 2e-16 ***
destination_hex1590 -2.708e-01 2.011e-02 -13.466 < 2e-16 ***
destination_hex1600 -3.104e-01 2.071e-02 -14.985 < 2e-16 ***
destination_hex1601 -8.502e-01 1.681e-02 -50.583 < 2e-16 ***
destination_hex1602 -4.098e-02 1.658e-02 -2.472 0.013441 *
destination_hex1603 8.052e-01 1.575e-02 51.123 < 2e-16 ***
destination_hex1604 -1.211e+00 1.834e-02 -66.037 < 2e-16 ***
destination_hex1605 -3.573e-01 1.627e-02 -21.967 < 2e-16 ***
destination_hex1606 -3.849e-01 2.015e-02 -19.100 < 2e-16 ***
destination_hex1607 6.985e-01 1.583e-02 44.128 < 2e-16 ***
destination_hex1608 1.536e-02 1.644e-02 0.934 0.350217
destination_hex1609 4.989e-01 1.606e-02 31.069 < 2e-16 ***
destination_hex1610 -1.334e+00 3.040e-02 -43.893 < 2e-16 ***
destination_hex1622 7.555e-01 1.862e-02 40.579 < 2e-16 ***
destination_hex1623 2.984e-01 1.583e-02 18.845 < 2e-16 ***
destination_hex1624 8.727e-01 1.572e-02 55.526 < 2e-16 ***
destination_hex1625 1.419e-01 1.623e-02 8.744 < 2e-16 ***
destination_hex1626 1.905e+00 1.544e-02 123.372 < 2e-16 ***
destination_hex1627 -9.835e-01 1.757e-02 -55.971 < 2e-16 ***
destination_hex1628 1.233e+00 1.565e-02 78.747 < 2e-16 ***
destination_hex1629 -1.583e+00 2.067e-02 -76.581 < 2e-16 ***
destination_hex1630 -8.362e-01 1.895e-02 -44.126 < 2e-16 ***
destination_hex1631 -1.476e+00 2.416e-02 -61.119 < 2e-16 ***
destination_hex1642 -2.030e+00 3.516e-02 -57.743 < 2e-16 ***
destination_hex1643 -6.661e-02 1.630e-02 -4.087 4.37e-05 ***
destination_hex1644 -8.422e-02 1.718e-02 -4.902 9.48e-07 ***
destination_hex1645 -1.793e-01 1.645e-02 -10.896 < 2e-16 ***
destination_hex1646 1.844e-01 1.704e-02 10.819 < 2e-16 ***
destination_hex1647 -4.838e-01 1.638e-02 -29.525 < 2e-16 ***
destination_hex1648 -2.137e-01 1.629e-02 -13.118 < 2e-16 ***
destination_hex1649 5.783e-01 1.581e-02 36.585 < 2e-16 ***
destination_hex1650 -2.557e-01 1.691e-02 -15.121 < 2e-16 ***
destination_hex1664 -3.938e+00 1.173e-01 -33.589 < 2e-16 ***
destination_hex1665 5.698e-01 1.578e-02 36.120 < 2e-16 ***
destination_hex1666 6.243e-01 1.578e-02 39.572 < 2e-16 ***
destination_hex1667 -7.043e-01 2.188e-02 -32.184 < 2e-16 ***
destination_hex1668 -3.608e-01 1.664e-02 -21.683 < 2e-16 ***
destination_hex1670 2.815e-01 1.591e-02 17.697 < 2e-16 ***
destination_hex1671 -2.205e-01 1.843e-02 -11.966 < 2e-16 ***
destination_hex1672 -8.938e-01 1.910e-02 -46.787 < 2e-16 ***
destination_hex1684 1.715e-01 1.785e-02 9.610 < 2e-16 ***
destination_hex1685 -6.277e-01 1.750e-02 -35.872 < 2e-16 ***
destination_hex1686 -1.443e-02 1.627e-02 -0.887 0.375198
destination_hex1687 3.189e-01 1.664e-02 19.162 < 2e-16 ***
destination_hex1688 -3.416e-01 1.663e-02 -20.541 < 2e-16 ***
destination_hex1689 -9.492e-01 1.801e-02 -52.709 < 2e-16 ***
destination_hex1690 -1.510e+00 1.971e-02 -76.596 < 2e-16 ***
destination_hex1691 5.015e-01 1.587e-02 31.599 < 2e-16 ***
destination_hex1692 -1.444e+00 2.034e-02 -71.031 < 2e-16 ***
destination_hex1706 -3.315e-02 1.701e-02 -1.949 0.051283 .
destination_hex1707 -9.336e-01 1.721e-02 -54.247 < 2e-16 ***
destination_hex1708 -2.223e-01 1.644e-02 -13.524 < 2e-16 ***
destination_hex1709 4.556e-01 1.593e-02 28.601 < 2e-16 ***
destination_hex1710 4.099e-01 1.606e-02 25.525 < 2e-16 ***
destination_hex1711 1.121e+00 1.564e-02 71.716 < 2e-16 ***
destination_hex1712 3.051e-01 1.584e-02 19.262 < 2e-16 ***
destination_hex1713 -1.990e+00 2.146e-02 -92.731 < 2e-16 ***
destination_hex1714 -4.914e-01 1.723e-02 -28.522 < 2e-16 ***
destination_hex172 -1.402e+00 4.682e-02 -29.935 < 2e-16 ***
destination_hex1727 4.217e-01 1.616e-02 26.099 < 2e-16 ***
destination_hex1728 3.777e-01 1.589e-02 23.771 < 2e-16 ***
destination_hex1729 5.104e-01 1.582e-02 32.263 < 2e-16 ***
destination_hex1730 -5.675e-01 1.751e-02 -32.417 < 2e-16 ***
destination_hex1731 2.629e-01 1.608e-02 16.351 < 2e-16 ***
destination_hex1732 1.618e-01 1.592e-02 10.162 < 2e-16 ***
destination_hex1733 -9.137e-01 1.720e-02 -53.125 < 2e-16 ***
destination_hex1734 6.821e-02 1.597e-02 4.272 1.94e-05 ***
destination_hex1735 -7.896e-01 2.052e-02 -38.488 < 2e-16 ***
destination_hex174 2.168e-01 2.095e-02 10.348 < 2e-16 ***
destination_hex1748 -5.865e-01 1.755e-02 -33.424 < 2e-16 ***
destination_hex1749 5.916e-01 1.575e-02 37.553 < 2e-16 ***
destination_hex175 1.025e-01 1.843e-02 5.558 2.72e-08 ***
destination_hex1750 4.054e-01 1.583e-02 25.618 < 2e-16 ***
destination_hex1751 1.074e-01 1.643e-02 6.535 6.35e-11 ***
destination_hex1753 3.976e-01 1.589e-02 25.026 < 2e-16 ***
destination_hex1754 1.557e+00 1.548e-02 100.590 < 2e-16 ***
destination_hex1755 8.704e-01 1.565e-02 55.634 < 2e-16 ***
destination_hex1756 -2.016e-01 1.620e-02 -12.450 < 2e-16 ***
destination_hex1757 -2.266e+00 2.653e-02 -85.397 < 2e-16 ***
destination_hex176 -1.107e+00 3.085e-02 -35.883 < 2e-16 ***
destination_hex1769 -9.327e-02 1.651e-02 -5.648 1.63e-08 ***
destination_hex1770 -2.312e-01 1.694e-02 -13.653 < 2e-16 ***
destination_hex1771 5.256e-01 1.600e-02 32.843 < 2e-16 ***
destination_hex1772 1.688e+00 1.668e-02 101.202 < 2e-16 ***
destination_hex1774 -2.981e-01 1.672e-02 -17.830 < 2e-16 ***
destination_hex1775 -8.603e-01 1.715e-02 -50.173 < 2e-16 ***
destination_hex1776 1.444e+00 1.549e-02 93.179 < 2e-16 ***
destination_hex1777 -3.738e-01 1.669e-02 -22.397 < 2e-16 ***
destination_hex1778 -1.297e+00 2.082e-02 -62.291 < 2e-16 ***
destination_hex1790 6.689e-01 1.601e-02 41.772 < 2e-16 ***
destination_hex1791 1.134e-01 1.629e-02 6.959 3.43e-12 ***
destination_hex1792 2.143e-01 1.674e-02 12.804 < 2e-16 ***
destination_hex1793 1.910e-01 1.624e-02 11.756 < 2e-16 ***
destination_hex1794 1.726e+00 1.685e-02 102.477 < 2e-16 ***
destination_hex1795 -1.961e+00 2.628e-02 -74.603 < 2e-16 ***
destination_hex1796 1.346e-01 1.616e-02 8.329 < 2e-16 ***
destination_hex1797 -8.754e-02 1.618e-02 -5.410 6.29e-08 ***
destination_hex1798 1.150e-01 1.608e-02 7.149 8.74e-13 ***
destination_hex1799 -1.038e+00 1.824e-02 -56.886 < 2e-16 ***
destination_hex1800 -2.393e+00 5.242e-02 -45.653 < 2e-16 ***
destination_hex1811 -8.080e-02 1.695e-02 -4.768 1.87e-06 ***
destination_hex1812 1.036e+00 1.562e-02 66.311 < 2e-16 ***
destination_hex1813 1.161e+00 1.559e-02 74.432 < 2e-16 ***
destination_hex1817 -1.384e+00 1.925e-02 -71.855 < 2e-16 ***
destination_hex1818 -2.309e-01 1.638e-02 -14.101 < 2e-16 ***
destination_hex1819 1.598e+00 1.550e-02 103.081 < 2e-16 ***
destination_hex1820 -3.233e+00 4.378e-02 -73.857 < 2e-16 ***
destination_hex1832 1.127e+00 1.579e-02 71.374 < 2e-16 ***
destination_hex1833 -1.772e-01 1.671e-02 -10.605 < 2e-16 ***
destination_hex1834 -4.351e-01 1.664e-02 -26.154 < 2e-16 ***
destination_hex1835 -2.246e-01 1.694e-02 -13.262 < 2e-16 ***
destination_hex1837 -1.011e-01 2.049e-02 -4.936 7.96e-07 ***
destination_hex1839 -1.137e+00 1.905e-02 -59.670 < 2e-16 ***
destination_hex1840 1.290e+00 1.556e-02 82.865 < 2e-16 ***
destination_hex1841 -1.793e+00 2.692e-02 -66.608 < 2e-16 ***
destination_hex1842 -7.451e-01 2.093e-02 -35.596 < 2e-16 ***
destination_hex1853 1.138e-01 1.630e-02 6.982 2.92e-12 ***
destination_hex1854 4.847e-01 1.603e-02 30.228 < 2e-16 ***
destination_hex1855 6.496e-01 1.590e-02 40.866 < 2e-16 ***
destination_hex1858 7.503e-01 1.742e-02 43.063 < 2e-16 ***
destination_hex1860 -3.826e-01 2.346e-02 -16.307 < 2e-16 ***
destination_hex1861 -1.447e-01 1.646e-02 -8.789 < 2e-16 ***
destination_hex1874 -7.988e-02 1.782e-02 -4.482 7.38e-06 ***
destination_hex1875 -1.827e+00 2.485e-02 -73.517 < 2e-16 ***
destination_hex1876 -6.034e-01 2.641e-02 -22.847 < 2e-16 ***
destination_hex1877 4.243e-01 1.600e-02 26.520 < 2e-16 ***
destination_hex1880 -9.285e-02 2.064e-02 -4.498 6.86e-06 ***
destination_hex1882 8.949e-02 1.647e-02 5.435 5.48e-08 ***
destination_hex1883 -1.171e+00 2.441e-02 -47.963 < 2e-16 ***
destination_hex1895 4.256e-01 1.619e-02 26.290 < 2e-16 ***
destination_hex1896 -4.176e-01 1.709e-02 -24.433 < 2e-16 ***
destination_hex1897 -1.121e+00 1.916e-02 -58.524 < 2e-16 ***
destination_hex1898 -1.401e+00 2.823e-02 -49.630 < 2e-16 ***
destination_hex1901 -5.893e-01 2.586e-02 -22.787 < 2e-16 ***
destination_hex1903 -1.516e+00 2.276e-02 -66.599 < 2e-16 ***
destination_hex1917 -4.536e-01 1.755e-02 -25.849 < 2e-16 ***
destination_hex1918 1.032e+00 1.643e-02 62.844 < 2e-16 ***
destination_hex1919 7.235e-01 1.591e-02 45.481 < 2e-16 ***
destination_hex1922 4.706e-01 1.831e-02 25.707 < 2e-16 ***
destination_hex1924 -2.092e+00 2.405e-02 -86.972 < 2e-16 ***
destination_hex1937 -1.241e-01 1.702e-02 -7.295 2.98e-13 ***
destination_hex1938 6.859e-01 1.587e-02 43.218 < 2e-16 ***
destination_hex1939 -2.030e-01 1.722e-02 -11.784 < 2e-16 ***
destination_hex1942 -8.985e-01 2.507e-02 -35.833 < 2e-16 ***
destination_hex195 -4.317e-01 3.345e-02 -12.907 < 2e-16 ***
destination_hex1959 -3.700e-01 1.777e-02 -20.824 < 2e-16 ***
destination_hex196 8.587e-01 1.827e-02 47.009 < 2e-16 ***
destination_hex1960 1.907e+00 1.545e-02 123.443 < 2e-16 ***
destination_hex1961 -7.145e-01 1.820e-02 -39.253 < 2e-16 ***
destination_hex1962 -1.148e-03 1.643e-02 -0.070 0.944289
destination_hex1964 9.918e-01 1.888e-02 52.536 < 2e-16 ***
destination_hex197 -1.676e+00 8.774e-02 -19.106 < 2e-16 ***
destination_hex1979 -1.440e-01 1.742e-02 -8.266 < 2e-16 ***
destination_hex1980 -1.679e-01 1.661e-02 -10.108 < 2e-16 ***
destination_hex1981 -2.366e-01 1.686e-02 -14.031 < 2e-16 ***
destination_hex1982 3.835e-01 1.680e-02 22.827 < 2e-16 ***
destination_hex1983 7.020e-02 1.642e-02 4.275 1.92e-05 ***
destination_hex1984 2.069e-01 1.647e-02 12.562 < 2e-16 ***
destination_hex1985 3.201e-01 1.625e-02 19.696 < 2e-16 ***
destination_hex2001 1.663e-02 1.659e-02 1.002 0.316257
destination_hex2002 2.219e-01 1.602e-02 13.849 < 2e-16 ***
destination_hex2003 7.095e-01 1.584e-02 44.785 < 2e-16 ***
destination_hex2004 9.628e-01 1.580e-02 60.941 < 2e-16 ***
destination_hex2005 1.149e-01 1.648e-02 6.972 3.13e-12 ***
destination_hex2006 1.201e+00 1.589e-02 75.544 < 2e-16 ***
destination_hex2007 -2.633e+00 3.190e-02 -82.523 < 2e-16 ***
destination_hex2022 6.782e-01 1.649e-02 41.120 < 2e-16 ***
destination_hex2023 5.052e-01 1.595e-02 31.674 < 2e-16 ***
destination_hex2024 8.905e-01 1.573e-02 56.592 < 2e-16 ***
destination_hex2025 -2.039e-01 1.655e-02 -12.318 < 2e-16 ***
destination_hex2026 -8.358e-01 1.892e-02 -44.170 < 2e-16 ***
destination_hex2027 5.598e-01 1.586e-02 35.291 < 2e-16 ***
destination_hex2043 -9.697e-01 1.868e-02 -51.913 < 2e-16 ***
destination_hex2044 5.107e-03 1.643e-02 0.311 0.755973
destination_hex2045 -2.918e-01 1.935e-02 -15.079 < 2e-16 ***
destination_hex2046 9.570e-01 1.566e-02 61.126 < 2e-16 ***
destination_hex2047 -8.085e-01 1.769e-02 -45.708 < 2e-16 ***
destination_hex2048 -4.863e-01 1.734e-02 -28.043 < 2e-16 ***
destination_hex2049 -4.254e+00 3.122e-02 -136.261 < 2e-16 ***
destination_hex2064 3.625e-02 1.685e-02 2.151 0.031480 *
destination_hex2065 -1.831e-01 1.706e-02 -10.737 < 2e-16 ***
destination_hex2066 -2.138e+00 3.475e-02 -61.527 < 2e-16 ***
destination_hex2067 2.241e+00 1.541e-02 145.384 < 2e-16 ***
destination_hex2068 -5.406e-01 1.966e-02 -27.500 < 2e-16 ***
destination_hex2069 -3.722e-01 1.725e-02 -21.576 < 2e-16 ***
destination_hex2085 -3.250e-01 1.712e-02 -18.987 < 2e-16 ***
destination_hex2086 1.325e+00 1.568e-02 84.517 < 2e-16 ***
destination_hex2087 1.064e+00 1.575e-02 67.556 < 2e-16 ***
destination_hex2088 -3.146e-02 1.625e-02 -1.935 0.052949 .
destination_hex2089 -9.064e-01 1.769e-02 -51.239 < 2e-16 ***
destination_hex2090 1.998e+00 1.547e-02 129.196 < 2e-16 ***
destination_hex2091 -3.889e+00 6.354e-02 -61.200 < 2e-16 ***
destination_hex2105 5.721e-01 7.693e-02 7.437 1.03e-13 ***
destination_hex2106 -1.296e+00 2.145e-02 -60.418 < 2e-16 ***
destination_hex2107 1.288e+00 1.569e-02 82.052 < 2e-16 ***
destination_hex2108 9.985e-01 1.592e-02 62.737 < 2e-16 ***
destination_hex2109 -4.208e-01 1.653e-02 -25.461 < 2e-16 ***
destination_hex2110 -9.886e-01 1.928e-02 -51.275 < 2e-16 ***
destination_hex2111 -2.616e+00 3.619e-02 -72.287 < 2e-16 ***
destination_hex2128 1.785e-01 1.776e-02 10.054 < 2e-16 ***
destination_hex2129 -4.145e-02 1.811e-02 -2.289 0.022077 *
destination_hex2130 -5.966e-01 1.616e-02 -36.912 < 2e-16 ***
destination_hex2131 -3.796e-01 1.686e-02 -22.517 < 2e-16 ***
destination_hex2132 -1.517e-01 1.689e-02 -8.980 < 2e-16 ***
destination_hex2148 -5.872e-01 2.075e-02 -28.298 < 2e-16 ***
destination_hex2149 -5.745e-01 1.864e-02 -30.828 < 2e-16 ***
destination_hex215 6.392e-01 3.141e-02 20.347 < 2e-16 ***
destination_hex2150 -1.127e+00 1.717e-02 -65.674 < 2e-16 ***
destination_hex2151 1.394e+00 1.556e-02 89.619 < 2e-16 ***
destination_hex2152 4.642e-01 1.608e-02 28.864 < 2e-16 ***
destination_hex2153 -1.020e+00 1.887e-02 -54.041 < 2e-16 ***
destination_hex216 7.374e-02 2.194e-02 3.362 0.000775 ***
destination_hex217 4.403e-01 1.767e-02 24.913 < 2e-16 ***
destination_hex2171 7.323e-01 1.615e-02 45.339 < 2e-16 ***
destination_hex2172 -8.631e-01 1.893e-02 -45.596 < 2e-16 ***
destination_hex2173 -3.924e-01 1.692e-02 -23.193 < 2e-16 ***
destination_hex2174 1.773e-01 1.669e-02 10.624 < 2e-16 ***
destination_hex2191 1.021e+00 1.691e-02 60.402 < 2e-16 ***
destination_hex2192 -5.261e-01 1.856e-02 -28.342 < 2e-16 ***
destination_hex2193 2.147e-01 1.641e-02 13.089 < 2e-16 ***
destination_hex2194 1.108e-01 1.631e-02 6.794 1.09e-11 ***
destination_hex2195 -8.111e-01 3.712e-02 -21.848 < 2e-16 ***
destination_hex2212 7.666e-01 2.019e-02 37.959 < 2e-16 ***
destination_hex2213 4.808e-01 1.725e-02 27.878 < 2e-16 ***
destination_hex2214 1.586e+00 1.671e-02 94.950 < 2e-16 ***
destination_hex2215 -3.437e-01 1.781e-02 -19.293 < 2e-16 ***
destination_hex2216 5.635e-01 1.635e-02 34.468 < 2e-16 ***
destination_hex2233 9.669e-01 1.805e-02 53.581 < 2e-16 ***
destination_hex2234 1.044e+00 1.725e-02 60.520 < 2e-16 ***
destination_hex2235 2.985e-01 1.770e-02 16.868 < 2e-16 ***
destination_hex2236 -1.176e+00 2.034e-02 -57.829 < 2e-16 ***
destination_hex2237 4.878e-01 1.906e-02 25.587 < 2e-16 ***
destination_hex2256 3.765e-02 1.971e-02 1.910 0.056137 .
destination_hex2257 -1.884e+00 3.003e-02 -62.744 < 2e-16 ***
destination_hex2258 1.056e-01 1.694e-02 6.237 4.46e-10 ***
destination_hex2259 1.202e+00 1.826e-02 65.797 < 2e-16 ***
destination_hex2277 -5.796e-01 2.889e-02 -20.060 < 2e-16 ***
destination_hex2278 -6.657e-01 2.182e-02 -30.507 < 2e-16 ***
destination_hex2279 2.666e-01 1.691e-02 15.762 < 2e-16 ***
destination_hex2280 -1.609e+00 3.518e-02 -45.748 < 2e-16 ***
destination_hex2297 -5.731e-01 2.210e-02 -25.925 < 2e-16 ***
destination_hex23 1.005e-01 4.843e-02 2.076 0.037888 *
destination_hex2300 -7.771e-01 2.495e-02 -31.153 < 2e-16 ***
destination_hex2301 -3.996e-01 1.812e-02 -22.052 < 2e-16 ***
destination_hex2318 1.387e+00 1.623e-02 85.492 < 2e-16 ***
destination_hex2319 1.539e+00 1.607e-02 95.765 < 2e-16 ***
destination_hex2322 -8.276e-02 1.789e-02 -4.626 3.72e-06 ***
destination_hex2337 1.366e+00 2.178e-02 62.710 < 2e-16 ***
destination_hex2341 1.769e+00 1.602e-02 110.431 < 2e-16 ***
destination_hex2343 -7.373e-01 1.982e-02 -37.208 < 2e-16 ***
destination_hex2361 4.421e-01 1.755e-02 25.191 < 2e-16 ***
destination_hex2364 -1.733e+00 3.327e-02 -52.089 < 2e-16 ***
destination_hex237 -5.239e-01 3.230e-02 -16.221 < 2e-16 ***
destination_hex2379 5.689e-01 2.931e-02 19.412 < 2e-16 ***
destination_hex238 3.648e-02 2.117e-02 1.723 0.084874 .
destination_hex2384 1.275e+00 1.661e-02 76.762 < 2e-16 ***
destination_hex239 3.521e-02 3.329e-02 1.058 0.290182
destination_hex2405 1.906e+00 1.597e-02 119.327 < 2e-16 ***
destination_hex2406 -1.223e+00 2.837e-02 -43.116 < 2e-16 ***
destination_hex2426 1.290e+00 1.881e-02 68.586 < 2e-16 ***
destination_hex2427 1.418e+00 1.664e-02 85.210 < 2e-16 ***
destination_hex2505 1.723e+00 2.371e-02 72.682 < 2e-16 ***
destination_hex257 6.921e-01 2.124e-02 32.581 < 2e-16 ***
destination_hex258 -6.213e-01 2.460e-02 -25.252 < 2e-16 ***
destination_hex259 6.024e-01 1.940e-02 31.048 < 2e-16 ***
destination_hex278 9.598e-01 2.158e-02 44.471 < 2e-16 ***
destination_hex279 1.297e-01 1.976e-02 6.564 5.25e-11 ***
destination_hex280 6.281e-01 1.942e-02 32.346 < 2e-16 ***
destination_hex298 -3.398e+00 1.333e-01 -25.485 < 2e-16 ***
destination_hex299 3.152e-01 2.222e-02 14.188 < 2e-16 ***
destination_hex300 -2.163e-01 2.266e-02 -9.547 < 2e-16 ***
destination_hex320 9.249e-01 2.012e-02 45.964 < 2e-16 ***
destination_hex321 -3.686e-01 2.743e-02 -13.439 < 2e-16 ***
destination_hex322 1.420e+00 1.910e-02 74.339 < 2e-16 ***
destination_hex340 2.095e+00 1.871e-02 111.943 < 2e-16 ***
destination_hex341 7.450e-01 1.925e-02 38.703 < 2e-16 ***
destination_hex342 1.433e+00 1.826e-02 78.520 < 2e-16 ***
destination_hex363 7.891e-01 2.022e-02 39.017 < 2e-16 ***
destination_hex364 2.191e+00 1.699e-02 128.990 < 2e-16 ***
destination_hex383 1.156e+00 1.758e-02 65.752 < 2e-16 ***
destination_hex384 3.975e-02 1.729e-02 2.300 0.021471 *
destination_hex385 1.226e+00 2.128e-02 57.596 < 2e-16 ***
destination_hex404 1.737e+00 2.123e-02 81.828 < 2e-16 ***
destination_hex405 1.285e+00 1.831e-02 70.178 < 2e-16 ***
destination_hex406 7.191e-01 1.607e-02 44.754 < 2e-16 ***
destination_hex407 1.227e+00 1.741e-02 70.454 < 2e-16 ***
destination_hex408 2.333e+00 1.591e-02 146.646 < 2e-16 ***
destination_hex425 -1.634e-01 2.815e-02 -5.805 6.45e-09 ***
destination_hex426 5.617e-01 1.837e-02 30.585 < 2e-16 ***
destination_hex427 -1.587e+00 2.770e-02 -57.282 < 2e-16 ***
destination_hex428 2.596e-01 1.843e-02 14.082 < 2e-16 ***
destination_hex429 -3.598e-02 2.733e-02 -1.316 0.188047
destination_hex44 1.886e+00 2.604e-02 72.420 < 2e-16 ***
destination_hex446 2.230e-01 2.680e-02 8.321 < 2e-16 ***
destination_hex447 -5.877e-02 2.296e-02 -2.560 0.010470 *
destination_hex448 3.064e-01 1.909e-02 16.049 < 2e-16 ***
destination_hex449 -5.825e-01 1.706e-02 -34.154 < 2e-16 ***
destination_hex450 -1.017e-01 1.932e-02 -5.266 1.40e-07 ***
destination_hex46 1.697e+00 2.503e-02 67.803 < 2e-16 ***
destination_hex468 8.224e-01 1.828e-02 44.976 < 2e-16 ***
destination_hex469 -4.570e-01 1.747e-02 -26.167 < 2e-16 ***
destination_hex470 8.675e-02 1.669e-02 5.196 2.03e-07 ***
destination_hex471 2.596e-02 2.167e-02 1.198 0.231060
destination_hex488 -9.092e-02 2.698e-02 -3.371 0.000750 ***
destination_hex489 -1.781e+00 4.962e-02 -35.883 < 2e-16 ***
destination_hex490 5.388e-01 1.741e-02 30.945 < 2e-16 ***
destination_hex491 -1.721e+00 2.127e-02 -80.904 < 2e-16 ***
destination_hex493 -2.257e+00 5.166e-02 -43.696 < 2e-16 ***
destination_hex494 -5.003e-01 2.660e-02 -18.811 < 2e-16 ***
destination_hex509 -1.527e-01 2.109e-02 -7.242 4.43e-13 ***
destination_hex510 7.264e-01 1.810e-02 40.131 < 2e-16 ***
destination_hex511 4.795e-02 1.660e-02 2.889 0.003864 **
destination_hex512 -3.680e-02 1.643e-02 -2.239 0.025144 *
destination_hex513 1.282e+00 1.689e-02 75.937 < 2e-16 ***
destination_hex514 6.246e-01 1.922e-02 32.491 < 2e-16 ***
destination_hex515 -5.124e-01 3.279e-02 -15.628 < 2e-16 ***
destination_hex530 -8.141e-01 3.328e-02 -24.466 < 2e-16 ***
destination_hex531 1.807e+00 1.633e-02 110.655 < 2e-16 ***
destination_hex532 5.292e-01 1.760e-02 30.068 < 2e-16 ***
destination_hex533 1.602e+00 1.557e-02 102.859 < 2e-16 ***
destination_hex534 5.201e-01 1.651e-02 31.503 < 2e-16 ***
destination_hex536 -3.868e-01 2.328e-02 -16.615 < 2e-16 ***
destination_hex537 -8.113e-01 3.681e-02 -22.040 < 2e-16 ***
destination_hex538 -1.511e+00 4.506e-02 -33.529 < 2e-16 ***
destination_hex539 -4.790e+00 5.776e-01 -8.294 < 2e-16 ***
destination_hex551 1.437e-01 2.336e-02 6.149 7.79e-10 ***
destination_hex552 1.900e+00 1.847e-02 102.881 < 2e-16 ***
destination_hex553 1.356e-01 1.745e-02 7.770 7.85e-15 ***
destination_hex554 -1.534e-01 1.671e-02 -9.184 < 2e-16 ***
destination_hex555 7.416e-01 1.698e-02 43.679 < 2e-16 ***
destination_hex559 -1.743e+00 5.644e-02 -30.887 < 2e-16 ***
destination_hex560 4.546e-01 2.221e-02 20.467 < 2e-16 ***
destination_hex561 -1.607e+00 6.899e-02 -23.290 < 2e-16 ***
destination_hex572 -2.958e-01 3.580e-02 -8.262 < 2e-16 ***
destination_hex573 1.306e+00 1.824e-02 71.619 < 2e-16 ***
destination_hex574 -6.975e-01 2.227e-02 -31.321 < 2e-16 ***
destination_hex575 2.343e+00 1.543e-02 151.859 < 2e-16 ***
destination_hex576 3.216e-01 1.652e-02 19.471 < 2e-16 ***
destination_hex578 -3.255e+00 1.077e-01 -30.226 < 2e-16 ***
destination_hex582 -2.042e+00 6.756e-02 -30.222 < 2e-16 ***
destination_hex583 -3.616e+00 2.188e-01 -16.530 < 2e-16 ***
destination_hex584 -5.996e-01 3.803e-02 -15.768 < 2e-16 ***
destination_hex593 -1.004e+00 2.818e-02 -35.621 < 2e-16 ***
destination_hex594 5.144e-01 2.019e-02 25.473 < 2e-16 ***
destination_hex595 1.010e+00 1.632e-02 61.873 < 2e-16 ***
destination_hex596 3.354e-01 1.611e-02 20.820 < 2e-16 ***
destination_hex597 -3.075e-01 2.164e-02 -14.210 < 2e-16 ***
destination_hex603 -1.801e+00 5.329e-02 -33.795 < 2e-16 ***
destination_hex604 -6.618e-01 4.699e-02 -14.084 < 2e-16 ***
destination_hex615 -5.080e-01 2.106e-02 -24.119 < 2e-16 ***
destination_hex616 7.373e-01 1.740e-02 42.370 < 2e-16 ***
destination_hex617 -4.542e-01 1.777e-02 -25.552 < 2e-16 ***
destination_hex618 1.107e-02 1.646e-02 0.672 0.501279
destination_hex620 4.811e-01 1.874e-02 25.668 < 2e-16 ***
destination_hex637 -1.149e-01 1.863e-02 -6.166 7.00e-10 ***
destination_hex638 1.642e-01 1.629e-02 10.081 < 2e-16 ***
destination_hex657 9.628e-01 1.672e-02 57.580 < 2e-16 ***
destination_hex658 3.775e-01 1.636e-02 23.068 < 2e-16 ***
destination_hex659 3.082e-01 1.627e-02 18.940 < 2e-16 ***
destination_hex66 2.074e-01 4.607e-02 4.503 6.70e-06 ***
destination_hex660 9.656e-01 1.578e-02 61.192 < 2e-16 ***
destination_hex662 4.212e-01 1.884e-02 22.358 < 2e-16 ***
destination_hex67 1.216e+00 2.006e-02 60.632 < 2e-16 ***
destination_hex677 8.061e-01 1.779e-02 45.325 < 2e-16 ***
destination_hex678 -6.218e-01 2.054e-02 -30.279 < 2e-16 ***
destination_hex679 7.214e-01 1.604e-02 44.987 < 2e-16 ***
destination_hex68 1.151e+00 2.440e-02 47.170 < 2e-16 ***
destination_hex680 2.347e+00 1.546e-02 151.753 < 2e-16 ***
destination_hex681 -9.314e-01 2.348e-02 -39.670 < 2e-16 ***
destination_hex699 4.832e-01 1.755e-02 27.530 < 2e-16 ***
destination_hex700 2.533e-01 1.666e-02 15.206 < 2e-16 ***
destination_hex701 -2.000e+00 2.440e-02 -81.958 < 2e-16 ***
destination_hex702 6.558e-01 1.598e-02 41.043 < 2e-16 ***
destination_hex704 5.482e-01 1.829e-02 29.966 < 2e-16 ***
destination_hex722 -2.536e-01 1.803e-02 -14.067 < 2e-16 ***
destination_hex725 -1.685e+00 3.082e-02 -54.674 < 2e-16 ***
destination_hex741 1.087e+00 1.675e-02 64.901 < 2e-16 ***
destination_hex743 -2.405e+00 2.587e-02 -92.999 < 2e-16 ***
destination_hex744 6.311e-01 1.602e-02 39.405 < 2e-16 ***
destination_hex761 1.211e+00 1.725e-02 70.195 < 2e-16 ***
destination_hex762 -5.443e-01 1.976e-02 -27.545 < 2e-16 ***
destination_hex763 -2.522e+00 2.543e-02 -99.197 < 2e-16 ***
destination_hex764 1.127e+00 1.566e-02 71.952 < 2e-16 ***
destination_hex765 -1.563e-01 1.779e-02 -8.786 < 2e-16 ***
destination_hex767 1.524e-01 1.667e-02 9.139 < 2e-16 ***
destination_hex772 -7.585e-01 3.774e-02 -20.098 < 2e-16 ***
destination_hex784 -1.754e+00 2.500e-02 -70.149 < 2e-16 ***
destination_hex785 1.309e-01 1.622e-02 8.069 7.09e-16 ***
destination_hex786 2.549e-01 1.604e-02 15.889 < 2e-16 ***
destination_hex787 -1.705e-01 1.793e-02 -9.507 < 2e-16 ***
destination_hex788 -1.451e+00 2.063e-02 -70.313 < 2e-16 ***
destination_hex789 -1.797e+00 2.263e-02 -79.398 < 2e-16 ***
destination_hex803 -1.183e-02 2.046e-02 -0.578 0.563232
destination_hex804 2.102e-01 1.662e-02 12.647 < 2e-16 ***
destination_hex805 1.599e+00 1.554e-02 102.923 < 2e-16 ***
destination_hex806 -2.467e-01 1.633e-02 -15.110 < 2e-16 ***
destination_hex807 -1.454e-01 1.674e-02 -8.682 < 2e-16 ***
destination_hex808 -1.759e+00 2.488e-02 -70.720 < 2e-16 ***
destination_hex809 2.003e-01 1.616e-02 12.394 < 2e-16 ***
destination_hex810 -1.578e-01 1.747e-02 -9.036 < 2e-16 ***
destination_hex814 -3.067e-02 2.456e-02 -1.249 0.211746
destination_hex819 4.911e+00 2.020e-02 243.068 < 2e-16 ***
destination_hex824 1.358e-01 2.023e-02 6.712 1.92e-11 ***
destination_hex826 3.010e-02 1.640e-02 1.835 0.066498 .
destination_hex827 -3.385e-01 1.647e-02 -20.553 < 2e-16 ***
destination_hex828 1.607e-01 1.600e-02 10.042 < 2e-16 ***
destination_hex829 -2.995e-01 1.729e-02 -17.321 < 2e-16 ***
destination_hex830 -1.162e+00 1.982e-02 -58.621 < 2e-16 ***
destination_hex831 2.014e+00 1.548e-02 130.143 < 2e-16 ***
destination_hex832 1.671e+00 1.563e-02 106.924 < 2e-16 ***
destination_hex835 -7.990e-01 2.455e-02 -32.540 < 2e-16 ***
destination_hex844 -4.331e-01 2.343e-02 -18.484 < 2e-16 ***
destination_hex846 -1.376e-01 1.673e-02 -8.222 < 2e-16 ***
destination_hex847 9.121e-01 1.589e-02 57.403 < 2e-16 ***
destination_hex848 -2.566e-02 1.648e-02 -1.557 0.119442
destination_hex849 -6.949e-01 1.730e-02 -40.160 < 2e-16 ***
destination_hex850 1.725e-01 1.628e-02 10.593 < 2e-16 ***
destination_hex851 -1.026e-01 1.643e-02 -6.246 4.21e-10 ***
destination_hex852 -1.826e-01 1.736e-02 -10.519 < 2e-16 ***
destination_hex853 7.829e-02 1.718e-02 4.556 5.22e-06 ***
destination_hex854 9.375e-02 2.073e-02 4.522 6.12e-06 ***
destination_hex855 -3.810e-01 2.473e-02 -15.406 < 2e-16 ***
destination_hex856 -1.871e+00 3.477e-02 -53.793 < 2e-16 ***
destination_hex86 -3.034e-01 3.769e-02 -8.050 8.28e-16 ***
destination_hex866 5.648e-01 1.819e-02 31.054 < 2e-16 ***
destination_hex867 1.369e+00 1.591e-02 86.097 < 2e-16 ***
destination_hex868 1.012e+00 1.613e-02 62.736 < 2e-16 ***
destination_hex869 2.031e+00 1.603e-02 126.700 < 2e-16 ***
destination_hex87 -1.438e+00 8.838e-02 -16.275 < 2e-16 ***
destination_hex870 1.464e+00 1.553e-02 94.253 < 2e-16 ***
destination_hex871 1.468e+00 1.572e-02 93.409 < 2e-16 ***
destination_hex872 2.962e-01 1.622e-02 18.256 < 2e-16 ***
destination_hex873 4.825e-02 1.715e-02 2.813 0.004906 **
destination_hex874 -1.738e+00 2.015e-02 -86.248 < 2e-16 ***
destination_hex875 -1.284e+00 3.203e-02 -40.090 < 2e-16 ***
destination_hex876 -6.069e-01 2.440e-02 -24.874 < 2e-16 ***
destination_hex877 3.454e-01 2.073e-02 16.660 < 2e-16 ***
destination_hex88 2.894e-01 2.262e-02 12.795 < 2e-16 ***
destination_hex887 -2.916e-02 1.732e-02 -1.684 0.092149 .
destination_hex888 -1.158e+00 2.037e-02 -56.871 < 2e-16 ***
destination_hex889 -2.713e-01 1.986e-02 -13.661 < 2e-16 ***
destination_hex89 7.000e-01 2.624e-02 26.672 < 2e-16 ***
destination_hex890 6.200e-01 1.599e-02 38.768 < 2e-16 ***
destination_hex891 -1.182e+00 2.084e-02 -56.705 < 2e-16 ***
destination_hex893 6.986e-01 1.588e-02 43.980 < 2e-16 ***
destination_hex894 -1.032e+00 1.917e-02 -53.825 < 2e-16 ***
destination_hex895 7.779e-02 1.786e-02 4.354 1.33e-05 ***
destination_hex896 -1.733e+00 3.362e-02 -51.540 < 2e-16 ***
destination_hex897 -1.736e+00 3.115e-02 -55.726 < 2e-16 ***
destination_hex898 8.230e-02 2.075e-02 3.965 7.33e-05 ***
destination_hex90 -2.957e+00 5.002e-01 -5.912 3.38e-09 ***
destination_hex908 5.713e-01 1.843e-02 30.996 < 2e-16 ***
destination_hex909 -1.409e-01 1.654e-02 -8.518 < 2e-16 ***
destination_hex910 -8.612e-01 1.928e-02 -44.663 < 2e-16 ***
destination_hex911 1.325e+00 1.575e-02 84.140 < 2e-16 ***
destination_hex912 -4.502e-01 1.682e-02 -26.763 < 2e-16 ***
destination_hex915 1.053e-01 1.636e-02 6.434 1.24e-10 ***
destination_hex917 1.169e+00 1.624e-02 72.014 < 2e-16 ***
destination_hex918 -2.245e+00 4.269e-02 -52.576 < 2e-16 ***
destination_hex919 -6.071e-01 2.105e-02 -28.835 < 2e-16 ***
destination_hex928 -1.247e+00 2.282e-02 -54.649 < 2e-16 ***
destination_hex929 -2.703e-01 1.672e-02 -16.165 < 2e-16 ***
destination_hex930 6.317e-01 1.570e-02 40.225 < 2e-16 ***
destination_hex931 -2.417e-01 1.832e-02 -13.195 < 2e-16 ***
destination_hex932 -2.326e+00 2.870e-02 -81.046 < 2e-16 ***
destination_hex933 2.618e-01 1.698e-02 15.421 < 2e-16 ***
destination_hex934 -3.130e-01 1.727e-02 -18.123 < 2e-16 ***
destination_hex935 2.029e+00 1.546e-02 131.189 < 2e-16 ***
destination_hex938 -3.910e+00 1.748e-01 -22.376 < 2e-16 ***
destination_hex939 2.183e+00 1.564e-02 139.587 < 2e-16 ***
destination_hex940 -8.377e-01 2.396e-02 -34.955 < 2e-16 ***
destination_hex949 -1.113e+00 2.097e-02 -53.066 < 2e-16 ***
destination_hex950 6.651e-01 1.602e-02 41.509 < 2e-16 ***
destination_hex951 1.515e+00 1.550e-02 97.789 < 2e-16 ***
destination_hex952 9.299e-01 1.707e-02 54.485 < 2e-16 ***
destination_hex953 2.831e-01 1.747e-02 16.203 < 2e-16 ***
destination_hex954 -1.779e+00 2.288e-02 -77.751 < 2e-16 ***
destination_hex955 1.023e+00 1.586e-02 64.485 < 2e-16 ***
destination_hex956 -5.270e-01 1.776e-02 -29.665 < 2e-16 ***
destination_hex957 -6.747e-02 1.743e-02 -3.871 0.000109 ***
destination_hex959 1.755e-02 2.670e-02 0.657 0.510913
destination_hex961 -3.660e-02 1.934e-02 -1.892 0.058463 .
destination_hex962 1.985e+00 1.597e-02 124.313 < 2e-16 ***
destination_hex970 2.923e-01 1.643e-02 17.788 < 2e-16 ***
destination_hex971 4.682e-01 1.591e-02 29.428 < 2e-16 ***
destination_hex972 -4.232e-01 1.676e-02 -25.255 < 2e-16 ***
destination_hex974 -6.480e-01 1.845e-02 -35.120 < 2e-16 ***
destination_hex975 -1.460e+00 2.211e-02 -66.030 < 2e-16 ***
destination_hex976 -7.905e-01 1.887e-02 -41.883 < 2e-16 ***
destination_hex977 -2.957e-02 1.653e-02 -1.789 0.073557 .
destination_hex978 -2.179e+00 1.867e-02 -116.734 < 2e-16 ***
destination_hex982 -4.361e-01 1.864e-02 -23.400 < 2e-16 ***
destination_hex983 6.683e+00 1.568e-02 426.168 < 2e-16 ***
destination_hex984 4.502e+00 1.576e-02 285.630 < 2e-16 ***
destination_hex991 2.699e-01 1.666e-02 16.199 < 2e-16 ***
destination_hex992 5.355e-01 1.616e-02 33.128 < 2e-16 ***
destination_hex993 -8.931e-01 1.797e-02 -49.700 < 2e-16 ***
destination_hex994 -9.134e-01 1.890e-02 -48.335 < 2e-16 ***
destination_hex995 -1.161e-01 1.715e-02 -6.769 1.30e-11 ***
destination_hex996 -7.516e-01 1.865e-02 -40.306 < 2e-16 ***
destination_hex997 2.545e-03 2.005e-02 0.127 0.898985
destination_hex998 2.747e-01 1.631e-02 16.837 < 2e-16 ***
destination_hex999 -1.721e+00 1.809e-02 -95.128 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 98559950 on 64884 degrees of freedom
Residual deviance: 38046589 on 64063 degrees of freedom
AIC: 38404932
Number of Fisher Scoring iterations: 8
Code
CalcRSquared(decSIM2$data$trips, decSIM2$fitted.values)
[1] 0.3464084
- glm from stats R package is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution. In this code, it’s applied to the
trips
as the response variable and a set of predictor variables in thefinal_df
data frame. - The formula
trips ~ log(push_num_bus_stops) + log(push_trainexit_count) + log(push_est_pop) + log(distance) + destination_hex
specifies thattrips
is modeled as a function ofpush_num_bus_stops
,push_trainexit_count
,push_est_pop
,distance
, anddestination_hex
. Thelog
function is applied to transform the predictor variables. - The argument
family = poisson(link = "log")
specifies that a Poisson regression model is fitted with a log link function. - The argument
na.action = na.exclude
specifies that any missing values should be excluded from the model fitting process. - summary from base R package is used to produce result summaries of the results of various model fitting functions. In this code, it’s applied to the fitted model
decSIM2
to obtain a summary of the model fit. CalcRSquared
is a user-defined function which is used to calculate the R-squared value of the fitted model. It takes the observed valuesdecSIM2$data$trips
and the fitted valuesdecSIM2$fitted.values
as inputs.
Key Coefficients: The Poisson regression model reveals insightful coefficients, offering a glimpse into the relationships between predictor variables and the logarithm of trip counts. Each predictor’s significance is denoted by the associated p-values, all indicating high statistical significance (< 2e-16).
- Intercept: 13.64 (p < 2e-16)
- log(push_num_bus_stops): 0.395 (p < 2e-16)
- log(push_trainexit_count): 0.291 (p < 2e-16)
- log(push_est_pop): 0.137 (p < 2e-16)
- log(distance): -1.254 (p < 2e-16)
- destination_hex1003: 1.820 (p < 2e-16)
- destination_hex1004: 0.917 (p < 2e-16)
- destination_hex1011: -0.072 (p = 0.000194)
- destination_hex1012: 1.443 (p < 2e-16)
- destination_hex1013: 0.059 (p = 0.000490)
- destination_hex1014: -1.564 (p < 2e-16)
- destination_hex1015: 1.247 (p < 2e-16)
- destination_hex1016: 1.292 (p < 2e-16)
- destination_hex1018: -0.196 (p < 2e-16)
- and various other dummy destination variables in which many are statistically significant.
Model Fit: The model’s R-squared value is approximately 0.346, indicating that around 34.6% of the variability in trip counts can be explained by the selected predictor variables. The goodness-of-fit metrics, such as the residual deviance and AIC, support the model’s effectiveness in capturing patterns within the dataset. All predictor variables demonstrate statistical significance, emphasizing their roles in explaining the observed variation in trip counts.
6.4 Compare The Result
Performance Table
Code
<- list(
model_list Unconstrained = uncSIM,
Unconstrained_with_Elimination = uncSIM2,
Origin_Constrained = orcSIM,
Origin_Constrained_with_Elimination = orcSIM2,
Destination_Constrained = decSIM,
Destination_Constrained_with_Elimination = decSIM2,
Doubly_Constrained = docSIM
)
# Compare performance with multiple metrics
compare_performance(model_list, metrics = c("AIC", "BIC", "RMSE"))
# Comparison of Model Performance Indices
Name | Model | AIC (weights) | BIC (weights) | RMSE
-----------------------------------------------------------------------------------------------
Unconstrained | glm | 4.9e+07 (<.001) | 4.9e+07 (<.001) | 1692.464
Unconstrained_with_Elimination | glm | 5.3e+07 (<.001) | 5.3e+07 (<.001) | 1760.563
Origin_Constrained | glm | 3.9e+07 (<.001) | 3.9e+07 (<.001) | 1587.727
Origin_Constrained_with_Elimination | glm | 4.1e+07 (<.001) | 4.1e+07 (<.001) | 1624.736
Destination_Constrained | glm | 3.7e+07 (<.001) | 3.7e+07 (<.001) | 1485.920
Destination_Constrained_with_Elimination | glm | 3.8e+07 (<.001) | 3.8e+07 (<.001) | 1509.215
Doubly_Constrained | glm | 2.8e+07 (>.999) | 2.8e+07 (>.999) | 1267.730
- The
list
function from base R is used to create a list namedmodel_list
that contains seven elements. Each element is a model simulation, and they are named as follows: ‘Unconstrained’, ‘Unconstrained_with_Elimination’, ‘Origin_Constrained’, ‘Origin_Constrained_with_Elimination’, ‘Destination_Constrained’, ‘Destination_Constrained_with_Elimination’, and ‘Doubly_Constrained’. The values of these elements are the corresponding model simulations (uncSIM
,uncSIM2
,orcSIM
,orcSIM2
,decSIM
,decSIM2
,docSIM
). - The
compare_performance
function is then used to compare the performance of the models inmodel_list
using multiple metrics. Themetrics
argument is set to a vector containing “AIC”, “BIC”, and “RMSE”. This means that the function will calculate the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE) for each model inmodel_list
.
In comparing the performance of various spatial interaction models, the model indices indicate that the Doubly Constrained model outperforms the others. It has the lowest values for the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), suggesting better model fit with lower complexity. Moreover, it boasts the smallest Root Mean Square Error (RMSE) of 1267.730, implying it has the highest predictive accuracy.
The Destination Constrained models follow, displaying improved performance over the Unconstrained models, as indicated by their lower AIC, BIC, and RMSE values. The addition of variable elimination to the Origin and Destination Constrained models shows slight increases in AIC and BIC values with corresponding minor increases in RMSE, which suggests that while the elimination process simplifies the models, it does so at the cost of some predictive performance.
Note that these results are inline with what the R2 suggested in previous finding.
The Akaike Information Criterion (AIC) is a measure of the relative quality of a statistical model for a given set of data. It provides a means for model selection by comparing models and choosing the one that minimizes information loss.
These weights are derived from the AIC values of each model and are used to compare each model’s likelihood of being the best model among the set of models being considered. A lower AIC value indicates a better model fit, and the corresponding weight represents the model’s probability relative to the others. A weight close to 1 suggests a high likelihood that it is the best model, while a weight close to 0 suggests a lower likelihood.
The Bayesian Information Criterion (BIC) is similar to AIC, but it introduces a penalty term for the number of parameters in the model to discourage overfitting.
Similar to AIC weights, BIC weights are calculated from the BIC values, which include a penalty for the number of parameters in the model to avoid overfitting. The BIC is more stringent than the AIC, especially as the sample size increases. As with AIC, a BIC weight close to 1 indicates a stronger model relative to the others in terms of both fit and parsimony.
The Root Mean Square Error (RMSE) is a frequently used measure of the differences between values predicted by a model and the values observed. It represents the square root of the second sample moment of the differences between predicted values and observed values or the quadratic mean of these differences.
Visualized Fitted Value
Next, we will visualize to compare the predicted value against the original value for each of the seven models that we trained previously using the following code chunk.
Code
# Function to round fitted values and create a data frame
<- function(sim_data, sim_name) {
round_and_rename as.data.frame(sim_data$fitted.values) %>%
round(digits = 0) %>%
setNames(paste0(sim_name, "_trips"))
}
# Round and rename fitted values for each simulation
<- round_and_rename(orcSIM, "uncSIM")
uncSIM_fitted <- round_and_rename(orcSIM, "orcSIM")
orcSIM_fitted <- round_and_rename(decSIM, "decSIM")
decSIM_fitted <- round_and_rename(docSIM, "docSIM")
docSIM_fitted <- round_and_rename(orcSIM2, "uncSIM2")
uncSIM2_fitted <- round_and_rename(orcSIM2, "orcSIM2")
orcSIM2_fitted <- round_and_rename(decSIM2, "decSIM2")
decSIM2_fitted
# Combine the rounded and renamed fitted values
<- final_df %>%
final_df_viz cbind(uncSIM_fitted, orcSIM_fitted, decSIM_fitted, docSIM_fitted, uncSIM2_fitted, orcSIM2_fitted, decSIM2_fitted)
# Create a function to generate a ggplot
<- function(data, x_col, color, title) {
generate_ggplot ggplot(data = data, aes(x = !!sym(x_col), y = trips)) +
geom_point(
size = data$trips / 10000,
alpha = .6,
shape = 21 # Change point shape
+
) xlim(0, 50000) +
geom_smooth(
method = lm,
se = TRUE,
color = "blue" # Change smooth line color
+
) labs(title = title) +
theme(
plot.title = element_text(size = 10),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
)
}
# Generate ggplots for each simulation
<- generate_ggplot(final_df_viz, "uncSIM_trips", "black", "Unconstrained")
p_unc <- generate_ggplot(final_df_viz, "orcSIM_trips", "black", "Origin-constrained")
p_orc <- generate_ggplot(final_df_viz, "decSIM_trips", "black", "Destination-constrained")
p_dec <- generate_ggplot(final_df_viz, "docSIM_trips", "black", "Doubly-constrained")
p_doc <- generate_ggplot(final_df_viz, "uncSIM2_trips", "black", "Unconstrained with Elimination")
p_unc2 <- generate_ggplot(final_df_viz, "orcSIM2_trips", "black", "Origin-constrained with Elimination")
p_orc2 <- generate_ggplot(final_df_viz, "decSIM2_trips", "black", "Destination-constrained with Elimination")
p_dec2
# Combine the plots using patchwork
+ p_unc2 + p_orc + p_orc2 + p_dec + p_dec2+ p_doc p_unc
- The
round_and_rename
function is a user-defined function that takes two arguments:sim_data
andsim_name
. It rounds the fitted values insim_data
to 0 decimal places, converts them to a data frame, and renames the column usingsim_name
. The new column name is the concatenation ofsim_name
and “_trips”. - The
round_and_rename
function is then applied to each simulation data (orcSIM
,decSIM
,docSIM
,orcSIM2
,decSIM2
) to round and rename the fitted values. The results are stored in new variables (uncSIM_fitted
,orcSIM_fitted
,decSIM_fitted
,docSIM_fitted
,uncSIM2_fitted
,orcSIM2_fitted
,decSIM2_fitted
). - The
cbind
function from base R is used to combine the rounded and renamed fitted values into a new data framefinal_df_viz
. - The
generate_ggplot
function is another user-defined function that takes four arguments:data
,x_col
,color
, andtitle
. It generates a ggplot ofdata
withx_col
on the x-axis andtrips
on the y-axis. The points are sized according totrips
and shaped as hollow circles (shape = 21
). A linear model is fitted to the data (method = lm
), and the smooth line color is set to blue. The title of the plot is set totitle
, and the text size, axis text, and axis title are customized using thetheme
function. - The
generate_ggplot
function is then applied tofinal_df_viz
for each simulation to generate ggplots. The results are stored in new variables (p_unc
,p_orc
,p_dec
,p_doc
,p_unc2
,p_orc2
,p_dec2
). - The
+
operator from the patchwork package is used to combine the plots into a single plot.
Summary analysis of each model’s fitted values compared to the original trips:
Unconstrained Model: This model shows a broad dispersion of points, with many falling far from the line of best fit. This suggests the model may not be very accurate in predicting the original trips, as indicated by the spread of fitted values.
Unconstrained with Elimination: A similar pattern to the unconstrained model, but with a slight shift in the points, indicating that variable elimination may not have significantly improved the model’s predictive ability.
Origin-Constrained Model: Points are more aligned with the trend line compared to the unconstrained model, suggesting a better fit for predicting the number of trips.
Origin-Constrained with Elimination: The scatter is close to the trend line, much like the origin-constrained model, implying that variable elimination has little effect on improving this model’s fit.
Destination-Constrained Model: The concentration of points around the line of best fit is even tighter here, indicating an improved accuracy over the origin-constrained models.
Destination-Constrained with Elimination: This shows a pattern similar to the destination-constrained model, with a close clustering of points around the trend line, suggesting a good model fit.
Doubly-Constrained Model: This model exhibits the tightest clustering of points along the line, indicating the highest predictive accuracy and the best fit among all models presented.
The size of the points, representing the number of trips, varies across models, with the doubly-constrained model showing the most consistent scaling in relation to the trend line, suggesting this model’s superior capability in capturing the trip distribution pattern in the data.
6.5 Conclusion
In this study, various Spatial Interaction Models (SIMs) were constructed to understand and predict bus commuter flow during the Weekday Morning Peak in Singapore. The models included Unconstrained, Origin-Constrained, Destination-Constrained, and Doubly-Constrained versions, each incorporating multiple features such as bus stops, train stations, HDB units, and more. This project also tried to experiment with inclusion of highly correlated variables and without its inclusion.
Based on the goodness-of-fit and linearity were conducted, revealing consistent outperformance of the Doubly-Constrained SIM over Origin-Constrained, Destination-Constrained, and Unconstrained SIMs. Key observations and conclusions include:
Model Complexity: The Doubly-Constrained SIM is consistently outperfoming the other models. Nevertheless, it might be simply be due to the complexity of the models since it contains thousands of classes from two categorical variables, which are the origin hex and the destination hex. In a way, this simply suggests that uniqueness of each origin and destination hex is the best predictor of the amount of trips
Push and Pull Factor Significance: All push and pull factor variables becomes significant explanatory variable influencing the number of trips during Weekday Morning Peak Periods. Those variables includes counts of bus stop, train station exits, business, schools, entertainment, food & beverages, and schools. This is inline with the gravity model theory. Nevertheless, some of these variables unexpectedly have inconsistent coefficients across the models (it came as negative sometimes, which is counterintuitive). This indicates spurious regression and/or multicollinearity exists, even among those variables that were observed to be not highly correlated.
Distance Significance: Distance between zones emerged as the crucial explanatory variable influencing the number of trips during Weekday Morning Peak Periods. Shorter distances correlated with higher trip numbers, highlighting the dominant role of distance in commuter behavior. This is also inline with the gravity model theory.
Push and Pull Factor Significance: Distance between zones emerged as significant explanatory variable influencing the number of trips during Weekday Morning Peak Periods. Shorter distances correlated with higher trip numbers, highlighting the dominant role of distance in commuter behavior. This is inline with the gravity model theory.
Despite the relatively good predictive performance of the best model (>50% explained variance), the better result of Doubly-Constrained SIM also might simply suggests that uniqueness of each origin and destination hex is the best predictor of the amount of trips. This implied various things for future research, such as: - The current best model (doubly-constrained) might have reduced performance in the future if the condition in some hexagon grid changed, as it relies on it as the variable. Therefore, future modelling should consider relying more on the push and pull factors variables.
The current push and pull factors variables are currently not good enough to represent the uniqueness that each hexagon grid has in determining trips. This might be due to various factors such as point of interest that is not yet identified, and each point of interest might also have different characteristic that affect the magnitude of it as a push or pull factors. For example, business and schools might have different capacities which in turn translated into different amount of commuters. Another important factor that might be improved is the estimated population of each hexagon. If the estimated population can be more accurate, it might yield better result.
Lastly, future project can also consider to use Spatial Econometric Interaction Models where factors can be given spatial weight. This might in turn be better to represent the characteristic of various geospatial conditions.
Spurious regression occurs when two unrelated variables show a strong statistical relationship in a regression analysis, even though there is no true cause-and-effect connection between them. In other words, the apparent relationship is misleading and arises by chance. This phenomenon can mislead researchers into thinking they have discovered a meaningful connection when, in fact, there is none. It’s a cautionary concept, reminding us to carefully consider the theoretical basis and real-world relevance of variables before concluding that they are genuinely related based solely on statistical results.
A Spatial Econometric Interaction Model is a statistical tool used to analyze how the interactions between different locations or units influence economic phenomena. In simpler terms, it helps us understand how economic variables in one area can affect or be affected by variables in neighboring areas. This model accounts for spatial dependencies, recognizing that nearby locations may share similarities or influence each other.
Imagine you want to study housing prices in different neighborhoods. A Spatial Econometric Interaction Model would not only consider local factors like the number of bedrooms and neighborhood amenities but also account for how prices in one neighborhood might be influenced by prices in nearby neighborhoods. It helps capture the idea that economic conditions in one area can spill over and impact neighboring areas, providing a more realistic and accurate analysis of regional economic relationships.
7 References
Cengel. Introduction to spatial data in R
Coşkun, et al. (2020). Performance Matters on Identification of Origin-Destination Matrix on Geospatial Big Data
Daniels & Mulley. Explaining walking distance to public transport: The dominance of public transport supply
Haynes & Fotheringham (1985). Gravity and Spatial Interaction Models
Kam Tin Seong. 16 Calibrating Spatial Interaction Models with R
Miller (2021). TRAFFIC ANALYSIS ZONE DEFINITION: ISSUES & GUIDANCE
R. Spatial interaction models with R
Sekste and Kazakov. “H3 hexagonal grid: Why we use it for data analysis and visualization”.
Sid Dhuri (2020). “Spatial Data Analysis With Hexagonal Grids”
Tao Ran (2021). Big Spatial Flow Data Analytics. In: Werner, M., Chiang, YY. (eds) Handbook of Big Geospatial Data
Land Transport Authority. Land Transport Data Mall