::p_load(sf, spdep, tmap, tidyverse, knitr) pacman
Hands-on Exercise 2: Spatial Weights and Application
1 Overview
Spatial analysis is a method used to understand the significance of spatial relationships between different objects. It’s like figuring out how different pieces on a chessboard influence each other’s moves. Spatial weights are concepts that help us measure and analyze how different locations or regions are related to each other based on their proximity, similarity, or interaction. Spatial weights are numerical values that represent the strength or intensity of the connection between two spatial units, such as points, polygons, or pixels. Applications of spatial weights include detecting patterns, clusters, outliers, hot spots, or cold spots in spatial data, and testing hypotheses about spatial processes or phenomena. summarized from: Getis, 2010
The data used for practice in this exercise includes a map outlining the boundaries of Hunan county, presented as a geospatial dataset in ESRI shapefile format, and a CSV file named “Hunan_2012.csv,” which includes specific local development indicators for Hunan in the year 2012.
This exercise will help to get familiar with importing geospatial data using functions from the sf package, reading CSV files with functions from the readr package, conducting relational joins through functions from the dplyr package, computing spatial weights calculating spatially lagged variables using functions from the spdep package.
2 Preparing the Library and Data
The following code chunk will import the required library:
The following panel will show how the data is imported and joined
the following code use st_read()
from sf package to import Hunan shapefile into simple features Object
<- st_read(dsn = "../data/geospatial", layer = "Hunan") hunan
Reading layer `Hunan' from data source `C:\ameernoor\ISSS624\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
glimpse(hunan)
Rows: 88
Columns: 8
$ NAME_2 <chr> "Changde", "Changde", "Changde", "Changde", "Changde", "Cha…
$ ID_3 <int> 21098, 21100, 21101, 21102, 21103, 21104, 21109, 21110, 211…
$ NAME_3 <chr> "Anxiang", "Hanshou", "Jinshi", "Li", "Linli", "Shimen", "L…
$ ENGTYPE_3 <chr> "County", "County", "County City", "County", "County", "Cou…
$ Shape_Leng <dbl> 1.869074, 2.360691, 1.425620, 3.474325, 2.289506, 4.171918,…
$ Shape_Area <dbl> 0.10056190, 0.19978745, 0.05302413, 0.18908121, 0.11450357,…
$ County <chr> "Anxiang", "Hanshou", "Jinshi", "Li", "Linli", "Shimen", "L…
$ geometry <POLYGON [°]> POLYGON ((112.0625 29.75523..., POLYGON ((112.2288 …
the following code use read_csv()
from readr package to import
<- read_csv("../data/aspatial/Hunan_2012.csv")
hunan2012 glimpse(hunan2012)
Rows: 88
Columns: 29
$ County <chr> "Anhua", "Anren", "Anxiang", "Baojing", "Chaling", "Changn…
$ City <chr> "Yiyang", "Chenzhou", "Changde", "Hunan West", "Zhuzhou", …
$ avg_wage <dbl> 30544, 28058, 31935, 30843, 31251, 28518, 54540, 28597, 33…
$ deposite <dbl> 10967.0, 4598.9, 5517.2, 2250.0, 8241.4, 10860.0, 24332.0,…
$ FAI <dbl> 6831.7, 6386.1, 3541.0, 1005.4, 6508.4, 7920.0, 33624.0, 1…
$ Gov_Rev <dbl> 456.72, 220.57, 243.64, 192.59, 620.19, 769.86, 5350.00, 1…
$ Gov_Exp <dbl> 2703.0, 1454.7, 1779.5, 1379.1, 1947.0, 2631.6, 7885.5, 11…
$ GDP <dbl> 13225.0, 4941.2, 12482.0, 4087.9, 11585.0, 19886.0, 88009.…
$ GDPPC <dbl> 14567, 12761, 23667, 14563, 20078, 24418, 88656, 10132, 17…
$ GIO <dbl> 9276.90, 4189.20, 5108.90, 3623.50, 9157.70, 37392.00, 513…
$ Loan <dbl> 3954.90, 2555.30, 2806.90, 1253.70, 4287.40, 4242.80, 4053…
$ NIPCR <dbl> 3528.3, 3271.8, 7693.7, 4191.3, 3887.7, 9528.0, 17070.0, 3…
$ Bed <dbl> 2718, 970, 1931, 927, 1449, 3605, 3310, 582, 2170, 2179, 1…
$ Emp <dbl> 494.310, 290.820, 336.390, 195.170, 330.290, 548.610, 670.…
$ EmpR <dbl> 441.4, 255.4, 270.5, 145.6, 299.0, 415.1, 452.0, 127.6, 21…
$ EmpRT <dbl> 338.0, 99.4, 205.9, 116.4, 154.0, 273.7, 219.4, 94.4, 174.…
$ Pri_Stu <dbl> 54.175, 33.171, 19.584, 19.249, 33.906, 81.831, 59.151, 18…
$ Sec_Stu <dbl> 32.830, 17.505, 17.819, 11.831, 20.548, 44.485, 39.685, 7.…
$ Household <dbl> 290.4, 104.6, 148.1, 73.2, 148.7, 211.2, 300.3, 76.1, 139.…
$ Household_R <dbl> 234.5, 121.9, 135.4, 69.9, 139.4, 211.7, 248.4, 59.6, 110.…
$ NOIP <dbl> 101, 34, 53, 18, 106, 115, 214, 17, 55, 70, 44, 84, 74, 17…
$ Pop_R <dbl> 670.3, 243.2, 346.0, 184.1, 301.6, 448.2, 475.1, 189.6, 31…
$ RSCG <dbl> 5760.60, 2386.40, 3957.90, 768.04, 4009.50, 5220.40, 22604…
$ Pop_T <dbl> 910.8, 388.7, 528.3, 281.3, 578.4, 816.3, 998.6, 256.7, 45…
$ Agri <dbl> 4942.253, 2357.764, 4524.410, 1118.561, 3793.550, 6430.782…
$ Service <dbl> 5414.5, 3814.1, 14100.0, 541.8, 5444.0, 13074.6, 17726.6, …
$ Disp_Inc <dbl> 12373, 16072, 16610, 13455, 20461, 20868, 183252, 12379, 1…
$ RORP <dbl> 0.7359464, 0.6256753, 0.6549309, 0.6544614, 0.5214385, 0.5…
$ ROREmp <dbl> 0.8929619, 0.8782065, 0.8041262, 0.7460163, 0.9052651, 0.7…
The following code use left_join()
from dplyr package to merge the aspatial data to the geospatial data
<- left_join(hunan,hunan2012)%>%
hunan select(1:4, 7, 15)
head(hunan, n = 10)
Simple feature collection with 10 features and 6 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 110.4922 ymin: 26.28322 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC
1 Changde 21098 Anxiang County Anxiang 23667
2 Changde 21100 Hanshou County Hanshou 20981
3 Changde 21101 Jinshi County City Jinshi 34592
4 Changde 21102 Li County Li 24473
5 Changde 21103 Linli County Linli 25554
6 Changde 21104 Shimen County Shimen 27137
7 Changsha 21109 Liuyang County City Liuyang 63118
8 Changsha 21110 Ningxiang County Ningxiang 62202
9 Changsha 21111 Wangcheng County Wangcheng 70666
10 Chenzhou 21112 Anren County Anren 12761
geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
7 POLYGON ((113.9905 28.5682,...
8 POLYGON ((112.7181 28.38299...
9 POLYGON ((112.7914 28.52688...
10 POLYGON ((113.1757 26.82734...
3 Visualizing Regional Development Indicator
this section will explore distribution of Gross Domestic Product Per Capita (GDPPC) 2012 in Hunan by creating base map and build choropleth map. qtm()
from tmap package is used to build the map.
Code
# Creating The Basemap
<- tm_shape(hunan) +
basemap tm_polygons() +
tm_text("NAME_3", size = 0.5) +
tm_layout(main.title = "Basemap", main.title.position = "left") # Add title
# Creating The Choropleth Map
<- qtm(hunan, "GDPPC") +
gdppc tm_layout(main.title = "Choropleth Map", main.title.position = "left",
legend.outside = TRUE, legend.outside.position = 'right') # adjust the legend
# show the map
tmap_arrange(basemap, gdppc, asp=1, ncol=2, widths = c(0.4,0.6))
4 Computing Contiguity Spatial Weights
Contiguity Spatial Weights are used in spatial data analysis to understand how close or connected different geographic areas are to each other. Simply put, if two areas, like counties or neighborhoods, share a border, they’re considered “contiguous” or neighbors. This concept is important for understanding patterns like how a phenomenon in one area might affect neighboring areas. Two main criteria are used to define contiguity: ‘rook’ and ‘queen’. Rook contiguity means areas are neighbors if they share a common edge. Queen contiguity is a bit broader, including areas that share either a common edge or a corner. This is akin to the movements of rook and queen pieces in chess Summarized from: Anselin
Source: Research Gate
This section explore poly2nb()
from spdep package to compute contiguity weight matrices. The function builds a neighbours list based on regions with contiguous boundaries. Using “queen” parameter that takes TRUE or FALSE as options, if it is set to TRUE, the function will return a list of first order neighbours using the Queen criteria.
<- poly2nb(hunan, queen=TRUE)
wm_q summary(wm_q)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Link number distribution:
1 2 3 4 5 6 7 8 9 11
2 2 12 16 24 14 11 4 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links
The output summarizes the spatial relationships in Hunan using Queen’s contiguity method. There are 88 regions, and the analysis reveals a total of 448 connections among them. The percentage of nonzero weights, indicating connected regions, is approximately 5.79%. On average, each region has around 5.09 links with other regions. The distribution of links shows that most regions have 4 or 5 connections, with the least connected regions being 30 and 65, each having only 1 link. The most connected region is labeled as 85, with 11 links.
to list all neighboring polygons of a unit, use wm_q
as shown in the following code, where 1 represent the polygon Unit ID being shown, and the output shows the 5 negiboring polygon Unit ID
Code
1]] wm_q[[
[1] 2 3 4 57 85
to retrieve the name of the county, use the following code
Code
$County[1] hunan
[1] "Anxiang"
to retrieve county names of more than one polygons, use the following example that display the neigbor of Anxiang
Code
$NAME_3[c(2,3,4,57,85)] hunan
[1] "Hanshou" "Jinshi" "Li" "Nan" "Taoyuan"
additionally the GDDPC data of multiple countries can also be displayed using the following code
Code
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
to display the complete weight matrix which represent the neigbors of each region, use the following code
Code
str(wm_q)
List of 88
$ : int [1:5] 2 3 4 57 85
$ : int [1:5] 1 57 58 78 85
$ : int [1:4] 1 4 5 85
$ : int [1:4] 1 3 5 6
$ : int [1:4] 3 4 6 85
$ : int [1:5] 4 5 69 75 85
$ : int [1:4] 67 71 74 84
$ : int [1:7] 9 46 47 56 78 80 86
$ : int [1:6] 8 66 68 78 84 86
$ : int [1:8] 16 17 19 20 22 70 72 73
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:3] 11 15 17
$ : int [1:4] 13 14 17 83
$ : int [1:5] 10 17 22 72 83
$ : int [1:7] 10 11 14 15 16 72 83
$ : int [1:5] 20 22 23 77 83
$ : int [1:6] 10 20 21 73 74 86
$ : int [1:7] 10 18 19 21 22 23 82
$ : int [1:5] 19 20 35 82 86
$ : int [1:5] 10 16 18 20 83
$ : int [1:7] 18 20 38 41 77 79 82
$ : int [1:5] 25 28 31 32 54
$ : int [1:5] 24 28 31 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:3] 26 29 42
$ : int [1:5] 24 25 33 49 54
$ : int [1:3] 27 37 42
$ : int 33
$ : int [1:8] 24 25 32 36 39 40 56 81
$ : int [1:8] 24 31 50 54 55 56 75 85
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 47 80 82 86
$ : int [1:6] 31 34 40 45 56 80
$ : int [1:4] 29 42 43 44
$ : int [1:4] 23 44 77 79
$ : int [1:5] 31 40 42 43 81
$ : int [1:6] 31 36 39 43 45 79
$ : int [1:6] 23 35 45 79 80 82
$ : int [1:7] 26 27 29 37 39 43 81
$ : int [1:6] 37 39 40 42 44 79
$ : int [1:4] 37 38 43 79
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:3] 8 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:5] 32 48 52 54 55
$ : int [1:3] 48 49 52
$ : int [1:5] 48 49 50 51 54
$ : int [1:3] 48 55 75
$ : int [1:6] 24 28 32 49 50 52
$ : int [1:5] 32 48 50 53 75
$ : int [1:7] 8 31 32 36 78 80 85
$ : int [1:6] 1 2 58 64 76 85
$ : int [1:5] 2 57 68 76 78
$ : int [1:4] 60 61 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:7] 12 59 60 62 63 77 87
$ : int [1:3] 61 77 87
$ : int [1:4] 12 61 77 83
$ : int [1:2] 57 76
$ : int 76
$ : int [1:5] 9 67 68 76 84
$ : int [1:4] 7 66 76 84
$ : int [1:5] 9 58 66 76 78
$ : int [1:3] 6 75 85
$ : int [1:3] 10 72 73
$ : int [1:3] 7 73 74
$ : int [1:5] 10 11 16 17 70
$ : int [1:5] 10 19 70 71 74
$ : int [1:6] 7 19 71 73 84 86
$ : int [1:6] 6 32 53 55 69 85
$ : int [1:7] 57 58 64 65 66 67 68
$ : int [1:7] 18 23 38 61 62 63 83
$ : int [1:7] 2 8 9 56 58 68 85
$ : int [1:7] 23 38 40 41 43 44 45
$ : int [1:8] 8 34 35 36 41 45 47 56
$ : int [1:6] 25 26 31 33 39 42
$ : int [1:5] 20 21 23 35 41
$ : int [1:9] 12 13 15 16 17 18 22 63 77
$ : int [1:6] 7 9 66 67 74 86
$ : int [1:11] 1 2 3 5 6 32 56 57 69 75 ...
$ : int [1:9] 8 9 19 21 35 46 47 74 84
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language poly2nb(pl = hunan, queen = TRUE)
- attr(*, "type")= chr "queen"
- attr(*, "sym")= logi TRUE
Similar to the example of Queen method, Rook method can be executed by changing queen parameter to False
Code
<- poly2nb(hunan, queen=FALSE)
wm_r summary(wm_r)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 440
Percentage nonzero weights: 5.681818
Average number of links: 5
Link number distribution:
1 2 3 4 5 6 7 8 9 10
2 2 12 20 21 14 11 3 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links
As expected from the stricter condition of Rook compared to Queen, the regions will have less neighbor on average
To create a connectivity graph, we first need to represent polygons as points. In our case, we’re working with polygons, so we’ll use polygon centroids as points for our graph. The common approach is to calculate these centroids using the sf package. To achieve this, we employ the st_centroid
function on the geometry column of our spatial object (in this case, hunan). Since we require the coordinates in a separate data frame, we utilize a mapping function. This function applies st_centroid
to each element of the geometry column and returns a vector of the same length. We specifically use the map_dbl variation from the purrr package. For latitude and longitude values, we extract them using double bracket notation, [[1]] for longitude and [[2]] for latitude. Finally, we combine these coordinates into a single object using cbind()
, and we verify the formatting by checking the first few observations using head()
.
Code
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])
longitude
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])
latitude
<- cbind(longitude, latitude)
coords
head(coords)
longitude latitude
[1,] 112.1531 29.44362
[2,] 112.0372 28.86489
[3,] 111.8917 29.47107
[4,] 111.7031 29.74499
[5,] 111.6138 29.49258
[6,] 111.0341 29.79863
Next, the following code will be used to display and compare Queen and Rook contiguity neighbours maps
Code
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey", main="Queen Contiguity")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")
plot(hunan$geometry, border="lightgrey", main="Rook Contiguity")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
5 Computing Distance Based Neighbours
In this part, we will explore how to figure out which areas are close to each other using distances, by utilizing dnearneigh()
function from the spdep package.
This function looks at points on a map and finds their neighbors based on how far apart they are. Range of distances can be set using bounds
argument, with a lower limit d1=
and an upper limit d2=
. If the locations are given in regular coordinates (like x and y on a typical map) and latitude and longitude argument set to true (longlat=TRUE
), the function measures distances in kilometers. It does this as if by figuring out how far it is on the Earth’s surface, using something called the WGS84 reference ellipsoid.
The WGS84 reference ellipsoid is a mathematical model that approximates the shape of the Earth. It’s not a perfect sphere but more like a slightly squashed ball, wider at the equator than at the poles. When measuring distances using this model, it considers the Earth’s curvature. This method provides a more accurate way to measure real distances on the Earth’s surface, especially over long distances where the Earth’s curvature becomes significant. It’s like tracing a line along the surface of an orange, rather than cutting straight through it.
The following part will explore how to find the right distance cut-off, fixed distance calculation, and adaptive distance calculation.
5.1 Determine the cut-off distance
To find the right distance for the analysis, execute the following steps:
- Use knearneigh() to get a list of indices representing the k nearest neighbors for each point.
- Convert this list into a neighbor list with knn2nb().
- Find the lengths of these neighbor relationships with nbdists(). Remove any complex structure with unlist().
Code
#coords <- coordinates(hunan)
<- knn2nb(knearneigh(coords))
k1 <- unlist(nbdists(k1, coords, longlat = TRUE))
k1dists summary(k1dists)
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.79 32.57 38.01 39.07 44.52 61.79
The summary shows that the maximum distance to the first nearest neighbor is 61.79 km. Use it as threshold to ensure each unit has at least one neighbor.
5.2 Computing fixed distance weight matrix
Based on the previous knowledge, create the distance weight matrix using the specified distance range (0 to 62 km).
Code
<- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62 wm_d62
Neighbour list object:
Number of regions: 88
Number of nonzero links: 324
Percentage nonzero weights: 4.183884
Average number of links: 3.681818
The “Average number of links: 3.681818” means that, on average, each location is linked to approximately 3.68 other locations within the specified distance range.
We can inspect the structure of the weight matrix using str()
or combining table() and card() of spdep
.
Code
str(wm_d62)
List of 88
$ : int [1:5] 3 4 5 57 64
$ : int [1:4] 57 58 78 85
$ : int [1:4] 1 4 5 57
$ : int [1:3] 1 3 5
$ : int [1:4] 1 3 4 85
$ : int 69
$ : int [1:2] 67 84
$ : int [1:4] 9 46 47 78
$ : int [1:4] 8 46 68 84
$ : int [1:4] 16 22 70 72
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:2] 11 17
$ : int 13
$ : int [1:4] 10 17 22 83
$ : int [1:3] 11 14 16
$ : int [1:3] 20 22 63
$ : int [1:5] 20 21 73 74 82
$ : int [1:5] 18 19 21 22 82
$ : int [1:6] 19 20 35 74 82 86
$ : int [1:4] 10 16 18 20
$ : int [1:3] 41 77 82
$ : int [1:4] 25 28 31 54
$ : int [1:4] 24 28 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:2] 26 29
$ : int [1:6] 24 25 33 49 52 54
$ : int [1:2] 27 37
$ : int 33
$ : int [1:2] 24 36
$ : int 50
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 46 47 80 82
$ : int [1:5] 31 34 45 56 80
$ : int [1:2] 29 42
$ : int [1:3] 44 77 79
$ : int [1:4] 40 42 43 81
$ : int [1:3] 39 45 79
$ : int [1:5] 23 35 45 79 82
$ : int [1:5] 26 37 39 43 81
$ : int [1:3] 39 42 44
$ : int [1:2] 38 43
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:5] 8 9 35 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:6] 32 48 51 52 54 55
$ : int [1:4] 48 49 50 52
$ : int [1:6] 28 48 49 50 51 54
$ : int [1:2] 48 55
$ : int [1:5] 24 28 49 50 52
$ : int [1:4] 48 50 53 75
$ : int 36
$ : int [1:5] 1 2 3 58 64
$ : int [1:5] 2 57 64 66 68
$ : int [1:3] 60 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:5] 12 60 62 63 87
$ : int [1:4] 61 63 77 87
$ : int [1:5] 12 18 61 62 83
$ : int [1:4] 1 57 58 76
$ : int 76
$ : int [1:5] 58 67 68 76 84
$ : int [1:2] 7 66
$ : int [1:4] 9 58 66 84
$ : int [1:2] 6 75
$ : int [1:3] 10 72 73
$ : int [1:2] 73 74
$ : int [1:3] 10 11 70
$ : int [1:4] 19 70 71 74
$ : int [1:5] 19 21 71 73 86
$ : int [1:2] 55 69
$ : int [1:3] 64 65 66
$ : int [1:3] 23 38 62
$ : int [1:2] 2 8
$ : int [1:4] 38 40 41 45
$ : int [1:5] 34 35 36 45 47
$ : int [1:5] 25 26 33 39 42
$ : int [1:6] 19 20 21 23 35 41
$ : int [1:4] 12 13 16 63
$ : int [1:4] 7 9 66 68
$ : int [1:2] 2 5
$ : int [1:4] 21 46 47 74
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language dnearneigh(x = coords, d1 = 0, d2 = 62, longlat = TRUE)
- attr(*, "dnn")= num [1:2] 0 62
- attr(*, "bounds")= chr [1:2] "GE" "LE"
- attr(*, "nbtype")= chr "distance"
- attr(*, "sym")= logi TRUE
the output shows for who are the neighbors of each county (shown in unit ID list per row)
Code
table(hunan$County, card(wm_d62))
1 2 3 4 5 6
Anhua 1 0 0 0 0 0
Anren 0 0 0 1 0 0
Anxiang 0 0 0 0 1 0
Baojing 0 0 0 0 1 0
Chaling 0 0 1 0 0 0
Changning 0 0 1 0 0 0
Changsha 0 0 0 1 0 0
Chengbu 0 1 0 0 0 0
Chenxi 0 0 0 1 0 0
Cili 0 1 0 0 0 0
Dao 0 0 0 1 0 0
Dongan 0 0 1 0 0 0
Dongkou 0 0 0 1 0 0
Fenghuang 0 0 0 1 0 0
Guidong 0 0 1 0 0 0
Guiyang 0 0 0 1 0 0
Guzhang 0 0 0 0 0 1
Hanshou 0 0 0 1 0 0
Hengdong 0 0 0 0 1 0
Hengnan 0 0 0 0 1 0
Hengshan 0 0 0 0 0 1
Hengyang 0 0 0 0 0 1
Hongjiang 0 0 0 0 1 0
Huarong 0 0 0 1 0 0
Huayuan 0 0 0 1 0 0
Huitong 0 0 0 1 0 0
Jiahe 0 0 0 0 1 0
Jianghua 0 0 1 0 0 0
Jiangyong 0 1 0 0 0 0
Jingzhou 0 1 0 0 0 0
Jinshi 0 0 0 1 0 0
Jishou 0 0 0 0 0 1
Lanshan 0 0 0 1 0 0
Leiyang 0 0 0 1 0 0
Lengshuijiang 0 0 1 0 0 0
Li 0 0 1 0 0 0
Lianyuan 0 0 0 0 1 0
Liling 0 1 0 0 0 0
Linli 0 0 0 1 0 0
Linwu 0 0 0 1 0 0
Linxiang 1 0 0 0 0 0
Liuyang 0 1 0 0 0 0
Longhui 0 0 1 0 0 0
Longshan 0 1 0 0 0 0
Luxi 0 0 0 0 1 0
Mayang 0 0 0 0 0 1
Miluo 0 0 0 0 1 0
Nan 0 0 0 0 1 0
Ningxiang 0 0 0 1 0 0
Ningyuan 0 0 0 0 1 0
Pingjiang 0 1 0 0 0 0
Qidong 0 0 1 0 0 0
Qiyang 0 0 1 0 0 0
Rucheng 0 1 0 0 0 0
Sangzhi 0 1 0 0 0 0
Shaodong 0 0 0 0 1 0
Shaoshan 0 0 0 0 1 0
Shaoyang 0 0 0 1 0 0
Shimen 1 0 0 0 0 0
Shuangfeng 0 0 0 0 0 1
Shuangpai 0 0 0 1 0 0
Suining 0 0 0 0 1 0
Taojiang 0 1 0 0 0 0
Taoyuan 0 1 0 0 0 0
Tongdao 0 1 0 0 0 0
Wangcheng 0 0 0 1 0 0
Wugang 0 0 1 0 0 0
Xiangtan 0 0 0 1 0 0
Xiangxiang 0 0 0 0 1 0
Xiangyin 0 0 0 1 0 0
Xinhua 0 0 0 0 1 0
Xinhuang 1 0 0 0 0 0
Xinning 0 1 0 0 0 0
Xinshao 0 0 0 0 0 1
Xintian 0 0 0 0 1 0
Xupu 0 1 0 0 0 0
Yanling 0 0 1 0 0 0
Yizhang 1 0 0 0 0 0
Yongshun 0 0 0 1 0 0
Yongxing 0 0 0 1 0 0
You 0 0 0 1 0 0
Yuanjiang 0 0 0 0 1 0
Yuanling 1 0 0 0 0 0
Yueyang 0 0 1 0 0 0
Zhijiang 0 0 0 0 1 0
Zhongfang 0 0 0 1 0 0
Zhuzhou 0 0 0 0 1 0
Zixing 0 0 1 0 0 0
Code
<- n.comp.nb(wm_d62)
n_comp table(n_comp$comp.id)
1
88
the table shows, for each county, how many neighbors it has.
Overlapping Visualization
The red lines represent 1st nearest neighbors, while the black lines are links within the 62 km cut-off distance.
Code
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)
Side by Side Visualization
Code
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey", main="1st nearest neighbours")
plot(k1, coords, add=TRUE, col="red", length=0.08)
plot(hunan$geometry, border="lightgrey", main="Distance link")
plot(wm_d62, coords, add=TRUE, pch = 19, cex = 0.6)
5.3 Computing adaptive distance weight matrix
Using fixed distance, densely settled urban areas tend to have more neigbours compared to rural. Having many neighbours smoothes the neighbour relationship across more neighbours. Number of neighbors can be adapted by accepting asymmetric neighbours or imposing symmetry.
The following code chunk impose 6 neighbors in the argument, hence the average number of links is 6 as well.
Code
<- knn2nb(knearneigh(coords, k=6))
knn6 knn6
Neighbour list object:
Number of regions: 88
Number of nonzero links: 528
Percentage nonzero weights: 6.818182
Average number of links: 6
Non-symmetric neighbours list
Visualize the weight matrix.
Code
plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
6 Weights based on IDW
Another method to derive spatial weight matrix is based on Inversed Distance method (IDW).
Compute distance of areas using nbdists() of spdep.
Code
<- nbdists(wm_q, coords, longlat = TRUE)
dist <- lapply(dist, function(x) 1/(x))
ids ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350
[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765
[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065
[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354
[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297
[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915
[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314
[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980
[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046
[[11]]
[1] 0.01882869 0.02243492 0.02247473
[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429
[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243
[[14]]
[1] 0.01882869 0.01233868 0.02098555
[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226
[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430
[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996
[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380
[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874
[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034
[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800
[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296
[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605
[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180
[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957
[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532
[[27]]
[1] 0.02155798 0.02490625 0.01562326
[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506
[[29]]
[1] 0.02490625 0.01686587 0.01395022
[[30]]
[1] 0.02090587
[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130
[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655
[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045
[[34]]
[1] 0.03113041 0.03589551 0.02882915
[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020
[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129
[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676
[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415
[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385
[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207
[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892
[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518
[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782
[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508
[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700
[[46]]
[1] 0.03453056 0.04033752 0.02689769
[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458
[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085
[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000
[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179
[[51]]
[1] 0.03370576 0.02138091 0.02873854
[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672
[[53]]
[1] 0.01630057 0.01979945 0.01253977
[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672
[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298
[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697
[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702
[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192
[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036
[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040
[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452
[[62]]
[1] 0.02514093 0.02002219 0.02110260
[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987
[[64]]
[1] 0.02911413 0.01689892
[[65]]
[1] 0.02471705
[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569
[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172
[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511
[[69]]
[1] 0.02174813 0.01645838 0.01419926
[[70]]
[1] 0.02631658 0.01963168 0.02278487
[[71]]
[1] 0.01473997 0.01838483 0.03197403
[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168
[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709
[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567
[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581
[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357
[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896
[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779
[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101
[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855
[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518
[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892
[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896
[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994
[[85]]
[1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
[7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794
[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994
[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034
[[88]]
[1] 0.01785036 0.02058034
Assign equal weights (style=“W”) to neighboring polygons. It’s calculated by assigning the fraction 1/(#ofneighbors) to each neighboring county then summing the weighted income values.
One downside of using this approach is that regions at the edges of the study area might rely on fewer neighboring regions. This could lead to either overestimating or underestimating the real spatial connections in the data.
For a stronger and more reliable choice, you can use “style=B.”
Code
<- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 37.86334 365.9147
Be careful when setting zero.policy=TRUE because it lets you have lists of regions that are not neighbors. This can be risky because you might not notice if some neighbors are missing in your data. On the other hand, using zero.policy=FALSE would result in an error if there are missing neighbors.
Check the weight of the first polygon’s eight neighbors with the following code chunk.
Code
$weights[10] rswm_q
[[1]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Each neighbor gets a share of 0.125 from the total weight. This implies that when R calculates the average income of neighboring areas, it multiplies each neighbor’s income by 0.2 before adding them up.
We can apply a similar approach to create a distance weight matrix that is standardized by rows.
Code
<- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 8.786867 0.3776535 3.8137
Code
$weights[1] rswm_ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
Code
summary(unlist(rswm_ids$weights))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338
7 Application of Spatial Weight Matrix
This part will explore how to create four types of spatial lagged variables as shown in the panel.
Code
<- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag GDPPC.lag
[1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
[9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00
Recalling the GDPPC values obtained earlier for these five counties
Code
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
Spatial Lag with Row-Standardized Weights method measures how much an observation at one location is influenced by observations at neighboring locations. The spatial lag is calculated as a weighted average, where the weights are standardized so that they add up to one for each location. This means that each location’s value is influenced equally by its neighbors, creating a balanced representation of neighboring influence. summarized from: Anselin
We can add the spatially lagged GDPPC values to the hunan sf data frame using the following code:
Code
<- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.list <- as.data.frame(lag.list)
lag.res colnames(lag.res) <- c("NAME_3", "lag GDPPC")
<- left_join(hunan,lag.res) hunan
The table below shows the average neighboring income values for each region.
Code
head(hunan)
Simple feature collection with 6 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS: WGS 84
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC lag GDPPC
1 Changde 21098 Anxiang County Anxiang 23667 24847.20
2 Changde 21100 Hanshou County Hanshou 20981 22724.80
3 Changde 21101 Jinshi County City Jinshi 34592 24143.25
4 Changde 21102 Li County Li 24473 27737.50
5 Changde 21103 Linli County Linli 25554 27270.25
6 Changde 21104 Shimen County Shimen 27137 21248.80
geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
Next, plot both GDPPC and spatially lagged GDPPC for comparison.
Code
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag GDPPC")
lag_gdppc tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)
using row-standardized weights, the distribution of lagged GDPPC on the right shows how neighboring countries becomes more similar. note that some region which was originally much richer than it’s neighbors, becomes poorer than its neighbors while it’s neighbor becomes richer. this indicates caution when using the row-standardized weights
We can calculate spatial lag as a sum of neighboring values using binary weights. This involves going back to the neighbors list, applying a function to assign binary weights, and explicitly assigning these weights in the nb2listw
function.
We start by assigning a value of 1 to each neighbor using lapply
:
Code
<- lapply(wm_q, function(x) 0*x + 1)
b_weights <- nb2listw(wm_q,
b_weights2 glist = b_weights,
style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 448 896 10224
With the proper weights assigned, compute the lag variable from our weights and GDPPC.
Code
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag_sum <- as.data.frame(lag_sum)
lag.res colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")
examine the result:
Code
lag_sum
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 124236 113624 96573 110950 109081 106244 174988 235079 273907 256221
[11] 98013 104050 102846 92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119 82884 74668 43184 99244 46549 20518
[31] 140576 121601 92069 43258 144567 132119 51694 59024 69349 73780
[41] 94651 100680 69398 52798 140472 118623 180933 82798 83090 97356
[51] 59482 77334 38777 111463 74715 174391 150558 122144 68012 84575
[61] 143045 51394 98279 47671 26360 236917 220631 185290 64640 70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456 67608 33860
This method involves summing up the values of neighboring observations to calculate the spatial lag. Unlike the row-standardized method, this doesn’t involve any kind of averaging or standardization, so the total influence is simply the sum of the influences from each neighbor. This approach is particularly useful when dealing with binary data (like 0 or 1 values). summarized from: Anselin
append the lag_sum GDPPC field to the hunan sf data frame:
Code
<- left_join(hunan, lag.res) hunan
plot both GDPPC and Spatial Lag Sum GDPPC for comparison.
Code
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag_sum GDPPC")
lag_sum_gdppc tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)
Spatial window average uses row-standardized weights and includes the diagonal element. To achieve this in R, we need to add the diagonal element to the neighbors’ structure before assigning weights.
Add the diagonal element using include.self() from spdep
Code
<- include.self(wm_q) wm_qs
obtain weights with nb2listw()
Code
<- nb2listw(wm_qs)
wm_qs wm_qs
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 30.90265 357.5308
create the lag variable from our weight structure and GDPPC variable:
Code
<- lag.listw(wm_qs,
lag_w_avg_gpdpc $GDPPC)
hunan lag_w_avg_gpdpc
[1] 24650.50 22434.17 26233.00 27084.60 26927.00 22230.17 47621.20 37160.12
[9] 49224.71 29886.89 26627.50 22690.17 25366.40 25825.75 30329.00 32682.83
[17] 25948.62 23987.67 25463.14 21904.38 23127.50 25949.83 20018.75 19524.17
[25] 18955.00 17800.40 15883.00 18831.33 14832.50 17965.00 17159.89 16199.44
[33] 18764.50 26878.75 23188.86 20788.14 12365.20 15985.00 13764.83 11907.43
[41] 17128.14 14593.62 11644.29 12706.00 21712.29 43548.25 35049.00 16226.83
[49] 19294.40 18156.00 19954.75 18145.17 12132.75 18419.29 14050.83 23619.75
[57] 24552.71 24733.67 16762.60 20932.60 19467.75 18334.00 22541.00 26028.00
[65] 29128.50 46569.00 47576.60 36545.50 20838.50 22531.00 42115.50 27619.00
[73] 27611.33 44523.29 18127.43 28746.38 20734.50 33880.62 14716.38 28516.22
[81] 18086.14 21244.50 29568.80 48119.71 22310.75 43151.60 17133.40 17009.33
convert the lag variable listw object into a data.frame:
Code
<- list(hunan$NAME_3, lag.listw(wm_qs, hunan$GDPPC))
lag.list.wm_qs <- as.data.frame(lag.list.wm_qs)
lag_wm_qs.res colnames(lag_wm_qs.res) <- c("NAME_3", "lag_window_avg GDPPC")
append lag_window_avg GDPPC values to hunan
:
Code
<- left_join(hunan, lag_wm_qs.res) hunan
compare the values of lag GDPPC and Spatial window average by using kable()
Code
%>%
hunan select("County",
"lag GDPPC",
"lag_window_avg GDPPC") %>%
kable()
County | lag GDPPC | lag_window_avg GDPPC | geometry |
---|---|---|---|
Anxiang | 24847.20 | 24650.50 | POLYGON ((112.0625 29.75523… |
Hanshou | 22724.80 | 22434.17 | POLYGON ((112.2288 29.11684… |
Jinshi | 24143.25 | 26233.00 | POLYGON ((111.8927 29.6013,… |
Li | 27737.50 | 27084.60 | POLYGON ((111.3731 29.94649… |
Linli | 27270.25 | 26927.00 | POLYGON ((111.6324 29.76288… |
Shimen | 21248.80 | 22230.17 | POLYGON ((110.8825 30.11675… |
Liuyang | 43747.00 | 47621.20 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 33582.71 | 37160.12 | POLYGON ((112.7181 28.38299… |
Wangcheng | 45651.17 | 49224.71 | POLYGON ((112.7914 28.52688… |
Anren | 32027.62 | 29886.89 | POLYGON ((113.1757 26.82734… |
Guidong | 32671.00 | 26627.50 | POLYGON ((114.1799 26.20117… |
Jiahe | 20810.00 | 22690.17 | POLYGON ((112.4425 25.74358… |
Linwu | 25711.50 | 25366.40 | POLYGON ((112.5914 25.55143… |
Rucheng | 30672.33 | 25825.75 | POLYGON ((113.6759 25.87578… |
Yizhang | 33457.75 | 30329.00 | POLYGON ((113.2621 25.68394… |
Yongxing | 31689.20 | 32682.83 | POLYGON ((113.3169 26.41843… |
Zixing | 20269.00 | 25948.62 | POLYGON ((113.7311 26.16259… |
Changning | 23901.60 | 23987.67 | POLYGON ((112.6144 26.60198… |
Hengdong | 25126.17 | 25463.14 | POLYGON ((113.1056 27.21007… |
Hengnan | 21903.43 | 21904.38 | POLYGON ((112.7599 26.98149… |
Hengshan | 22718.60 | 23127.50 | POLYGON ((112.607 27.4689, … |
Leiyang | 25918.80 | 25949.83 | POLYGON ((112.9996 26.69276… |
Qidong | 20307.00 | 20018.75 | POLYGON ((111.7818 27.0383,… |
Chenxi | 20023.80 | 19524.17 | POLYGON ((110.2624 28.21778… |
Zhongfang | 16576.80 | 18955.00 | POLYGON ((109.9431 27.72858… |
Huitong | 18667.00 | 17800.40 | POLYGON ((109.9419 27.10512… |
Jingzhou | 14394.67 | 15883.00 | POLYGON ((109.8186 26.75842… |
Mayang | 19848.80 | 18831.33 | POLYGON ((109.795 27.98008,… |
Tongdao | 15516.33 | 14832.50 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518.00 | 17965.00 | POLYGON ((109.227 27.43733,… |
Xupu | 17572.00 | 17159.89 | POLYGON ((110.7189 28.30485… |
Yuanling | 15200.12 | 16199.44 | POLYGON ((110.9652 28.99895… |
Zhijiang | 18413.80 | 18764.50 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 14419.33 | 26878.75 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 24094.50 | 23188.86 | POLYGON ((112.263 27.70421,… |
Xinhua | 22019.83 | 20788.14 | POLYGON ((111.3345 28.19642… |
Chengbu | 12923.50 | 12365.20 | POLYGON ((110.4455 26.69317… |
Dongan | 14756.00 | 15985.00 | POLYGON ((111.4531 26.86812… |
Dongkou | 13869.80 | 13764.83 | POLYGON ((110.6622 27.37305… |
Longhui | 12296.67 | 11907.43 | POLYGON ((110.985 27.65983,… |
Shaodong | 15775.17 | 17128.14 | POLYGON ((111.9054 27.40254… |
Suining | 14382.86 | 14593.62 | POLYGON ((110.389 27.10006,… |
Wugang | 11566.33 | 11644.29 | POLYGON ((110.9878 27.03345… |
Xinning | 13199.50 | 12706.00 | POLYGON ((111.0736 26.84627… |
Xinshao | 23412.00 | 21712.29 | POLYGON ((111.6013 27.58275… |
Shaoshan | 39541.00 | 43548.25 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 36186.60 | 35049.00 | POLYGON ((112.4549 28.05783… |
Baojing | 16559.60 | 16226.83 | POLYGON ((109.7015 28.82844… |
Fenghuang | 20772.50 | 19294.40 | POLYGON ((109.5239 28.19206… |
Guzhang | 19471.20 | 18156.00 | POLYGON ((109.8968 28.74034… |
Huayuan | 19827.33 | 19954.75 | POLYGON ((109.5647 28.61712… |
Jishou | 15466.80 | 18145.17 | POLYGON ((109.8375 28.4696,… |
Longshan | 12925.67 | 12132.75 | POLYGON ((109.6337 29.62521… |
Luxi | 18577.17 | 18419.29 | POLYGON ((110.1067 28.41835… |
Yongshun | 14943.00 | 14050.83 | POLYGON ((110.0003 29.29499… |
Anhua | 24913.00 | 23619.75 | POLYGON ((111.6034 28.63716… |
Nan | 25093.00 | 24552.71 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 24428.80 | 24733.67 | POLYGON ((112.4391 29.1791,… |
Jianghua | 17003.00 | 16762.60 | POLYGON ((111.6461 25.29661… |
Lanshan | 21143.75 | 20932.60 | POLYGON ((112.2286 25.61123… |
Ningyuan | 20435.00 | 19467.75 | POLYGON ((112.0715 26.09892… |
Shuangpai | 17131.33 | 18334.00 | POLYGON ((111.8864 26.11957… |
Xintian | 24569.75 | 22541.00 | POLYGON ((112.2578 26.0796,… |
Huarong | 23835.50 | 26028.00 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360.00 | 29128.50 | POLYGON ((113.5502 29.67418… |
Miluo | 47383.40 | 46569.00 | POLYGON ((112.9902 29.02139… |
Pingjiang | 55157.75 | 47576.60 | POLYGON ((113.8436 29.06152… |
Xiangyin | 37058.00 | 36545.50 | POLYGON ((112.9173 28.98264… |
Cili | 21546.67 | 20838.50 | POLYGON ((110.8822 29.69017… |
Chaling | 23348.67 | 22531.00 | POLYGON ((113.7666 27.10573… |
Liling | 42323.67 | 42115.50 | POLYGON ((113.5673 27.94346… |
Yanling | 28938.60 | 27619.00 | POLYGON ((113.9292 26.6154,… |
You | 25880.80 | 27611.33 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 47345.67 | 44523.29 | POLYGON ((113.2493 28.02411… |
Sangzhi | 18711.33 | 18127.43 | POLYGON ((110.556 29.40543,… |
Yueyang | 29087.29 | 28746.38 | POLYGON ((113.343 29.61064,… |
Qiyang | 20748.29 | 20734.50 | POLYGON ((111.5563 26.81318… |
Taojiang | 35933.71 | 33880.62 | POLYGON ((112.0508 28.67265… |
Shaoyang | 15439.71 | 14716.38 | POLYGON ((111.5013 27.30207… |
Lianyuan | 29787.50 | 28516.22 | POLYGON ((111.6789 28.02946… |
Hongjiang | 18145.00 | 18086.14 | POLYGON ((110.1441 27.47513… |
Hengyang | 21617.00 | 21244.50 | POLYGON ((112.7144 26.98613… |
Guiyang | 29203.89 | 29568.80 | POLYGON ((113.0811 26.04963… |
Changsha | 41363.67 | 48119.71 | POLYGON ((112.9421 28.03722… |
Taoyuan | 22259.09 | 22310.75 | POLYGON ((112.0612 29.32855… |
Xiangtan | 44939.56 | 43151.60 | POLYGON ((113.0426 27.8942,… |
Dao | 16902.00 | 17133.40 | POLYGON ((111.498 25.81679,… |
Jiangyong | 16930.00 | 17009.33 | POLYGON ((111.3659 25.39472… |
use qtm()
to plot the lag_gdppc and w_ave_gdppc maps next to each other for quick comparison:
Code
<- qtm(hunan, "lag_window_avg GDPPC")
w_avg_gdppc tmap_arrange(lag_gdppc, w_avg_gdppc, asp=1, ncol=2)
This concept extends the idea of spatial lag by including the observation itself in the average calculation. It’s like creating a window that includes the value at a specific location and its neighbors, and then computing the average of all these values. This method is useful when you want to take into account both the value at a specific point and the influence of its surroundings. summarized from: Anselin
Spatial window sum is similar to window average but without using row-standardized weights.
Let’s add the diagonal element to the neighbor list:
Code
<- include.self(wm_q) wm_qs
Next, we assign binary weights:
Code
<- lapply(wm_qs, function(x) 0*x + 1)
b_weights <- nb2listw(wm_qs, glist = b_weights, style = "B")
b_weights2 b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 536 1072 14160
Now, we can compute the lag variable with lag.listw()
:
Code
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc w_sum_gdppc
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 147903 134605 131165 135423 134635 133381 238106 297281 344573 268982
[11] 106510 136141 126832 103303 151645 196097 207589 143926 178242 175235
[21] 138765 155699 160150 117145 113730 89002 63532 112988 59330 35930
[31] 154439 145795 112587 107515 162322 145517 61826 79925 82589 83352
[41] 119897 116749 81510 63530 151986 174193 210294 97361 96472 108936
[51] 79819 108871 48531 128935 84305 188958 171869 148402 83813 104663
[61] 155742 73336 112705 78084 58257 279414 237883 219273 83354 90124
[71] 168462 165714 165668 311663 126892 229971 165876 271045 117731 256646
[81] 126603 127467 295688 336838 267729 431516 85667 51028
Next, we convert the lag variable listw object into a data.frame:
Code
<- as.data.frame(w_sum_gdppc)
w_sum_gdppc.res colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")
Now, we append w_sum GDPPC values to hunan:
Code
<- left_join(hunan, w_sum_gdppc.res) hunan
use kable()
To compare the values of lag GDPPC and Spatial window average
Code
%>%
hunan select("County", "lag_sum GDPPC", "w_sum GDPPC") %>%
kable()
County | lag_sum GDPPC | w_sum GDPPC | geometry |
---|---|---|---|
Anxiang | 124236 | 147903 | POLYGON ((112.0625 29.75523… |
Hanshou | 113624 | 134605 | POLYGON ((112.2288 29.11684… |
Jinshi | 96573 | 131165 | POLYGON ((111.8927 29.6013,… |
Li | 110950 | 135423 | POLYGON ((111.3731 29.94649… |
Linli | 109081 | 134635 | POLYGON ((111.6324 29.76288… |
Shimen | 106244 | 133381 | POLYGON ((110.8825 30.11675… |
Liuyang | 174988 | 238106 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 235079 | 297281 | POLYGON ((112.7181 28.38299… |
Wangcheng | 273907 | 344573 | POLYGON ((112.7914 28.52688… |
Anren | 256221 | 268982 | POLYGON ((113.1757 26.82734… |
Guidong | 98013 | 106510 | POLYGON ((114.1799 26.20117… |
Jiahe | 104050 | 136141 | POLYGON ((112.4425 25.74358… |
Linwu | 102846 | 126832 | POLYGON ((112.5914 25.55143… |
Rucheng | 92017 | 103303 | POLYGON ((113.6759 25.87578… |
Yizhang | 133831 | 151645 | POLYGON ((113.2621 25.68394… |
Yongxing | 158446 | 196097 | POLYGON ((113.3169 26.41843… |
Zixing | 141883 | 207589 | POLYGON ((113.7311 26.16259… |
Changning | 119508 | 143926 | POLYGON ((112.6144 26.60198… |
Hengdong | 150757 | 178242 | POLYGON ((113.1056 27.21007… |
Hengnan | 153324 | 175235 | POLYGON ((112.7599 26.98149… |
Hengshan | 113593 | 138765 | POLYGON ((112.607 27.4689, … |
Leiyang | 129594 | 155699 | POLYGON ((112.9996 26.69276… |
Qidong | 142149 | 160150 | POLYGON ((111.7818 27.0383,… |
Chenxi | 100119 | 117145 | POLYGON ((110.2624 28.21778… |
Zhongfang | 82884 | 113730 | POLYGON ((109.9431 27.72858… |
Huitong | 74668 | 89002 | POLYGON ((109.9419 27.10512… |
Jingzhou | 43184 | 63532 | POLYGON ((109.8186 26.75842… |
Mayang | 99244 | 112988 | POLYGON ((109.795 27.98008,… |
Tongdao | 46549 | 59330 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518 | 35930 | POLYGON ((109.227 27.43733,… |
Xupu | 140576 | 154439 | POLYGON ((110.7189 28.30485… |
Yuanling | 121601 | 145795 | POLYGON ((110.9652 28.99895… |
Zhijiang | 92069 | 112587 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 43258 | 107515 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 144567 | 162322 | POLYGON ((112.263 27.70421,… |
Xinhua | 132119 | 145517 | POLYGON ((111.3345 28.19642… |
Chengbu | 51694 | 61826 | POLYGON ((110.4455 26.69317… |
Dongan | 59024 | 79925 | POLYGON ((111.4531 26.86812… |
Dongkou | 69349 | 82589 | POLYGON ((110.6622 27.37305… |
Longhui | 73780 | 83352 | POLYGON ((110.985 27.65983,… |
Shaodong | 94651 | 119897 | POLYGON ((111.9054 27.40254… |
Suining | 100680 | 116749 | POLYGON ((110.389 27.10006,… |
Wugang | 69398 | 81510 | POLYGON ((110.9878 27.03345… |
Xinning | 52798 | 63530 | POLYGON ((111.0736 26.84627… |
Xinshao | 140472 | 151986 | POLYGON ((111.6013 27.58275… |
Shaoshan | 118623 | 174193 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 180933 | 210294 | POLYGON ((112.4549 28.05783… |
Baojing | 82798 | 97361 | POLYGON ((109.7015 28.82844… |
Fenghuang | 83090 | 96472 | POLYGON ((109.5239 28.19206… |
Guzhang | 97356 | 108936 | POLYGON ((109.8968 28.74034… |
Huayuan | 59482 | 79819 | POLYGON ((109.5647 28.61712… |
Jishou | 77334 | 108871 | POLYGON ((109.8375 28.4696,… |
Longshan | 38777 | 48531 | POLYGON ((109.6337 29.62521… |
Luxi | 111463 | 128935 | POLYGON ((110.1067 28.41835… |
Yongshun | 74715 | 84305 | POLYGON ((110.0003 29.29499… |
Anhua | 174391 | 188958 | POLYGON ((111.6034 28.63716… |
Nan | 150558 | 171869 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 122144 | 148402 | POLYGON ((112.4391 29.1791,… |
Jianghua | 68012 | 83813 | POLYGON ((111.6461 25.29661… |
Lanshan | 84575 | 104663 | POLYGON ((112.2286 25.61123… |
Ningyuan | 143045 | 155742 | POLYGON ((112.0715 26.09892… |
Shuangpai | 51394 | 73336 | POLYGON ((111.8864 26.11957… |
Xintian | 98279 | 112705 | POLYGON ((112.2578 26.0796,… |
Huarong | 47671 | 78084 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360 | 58257 | POLYGON ((113.5502 29.67418… |
Miluo | 236917 | 279414 | POLYGON ((112.9902 29.02139… |
Pingjiang | 220631 | 237883 | POLYGON ((113.8436 29.06152… |
Xiangyin | 185290 | 219273 | POLYGON ((112.9173 28.98264… |
Cili | 64640 | 83354 | POLYGON ((110.8822 29.69017… |
Chaling | 70046 | 90124 | POLYGON ((113.7666 27.10573… |
Liling | 126971 | 168462 | POLYGON ((113.5673 27.94346… |
Yanling | 144693 | 165714 | POLYGON ((113.9292 26.6154,… |
You | 129404 | 165668 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 284074 | 311663 | POLYGON ((113.2493 28.02411… |
Sangzhi | 112268 | 126892 | POLYGON ((110.556 29.40543,… |
Yueyang | 203611 | 229971 | POLYGON ((113.343 29.61064,… |
Qiyang | 145238 | 165876 | POLYGON ((111.5563 26.81318… |
Taojiang | 251536 | 271045 | POLYGON ((112.0508 28.67265… |
Shaoyang | 108078 | 117731 | POLYGON ((111.5013 27.30207… |
Lianyuan | 238300 | 256646 | POLYGON ((111.6789 28.02946… |
Hongjiang | 108870 | 126603 | POLYGON ((110.1441 27.47513… |
Hengyang | 108085 | 127467 | POLYGON ((112.7144 26.98613… |
Guiyang | 262835 | 295688 | POLYGON ((113.0811 26.04963… |
Changsha | 248182 | 336838 | POLYGON ((112.9421 28.03722… |
Taoyuan | 244850 | 267729 | POLYGON ((112.0612 29.32855… |
Xiangtan | 404456 | 431516 | POLYGON ((113.0426 27.8942,… |
Dao | 67608 | 85667 | POLYGON ((111.498 25.81679,… |
Jiangyong | 33860 | 51028 | POLYGON ((111.3659 25.39472… |
Finally, we’ll use qtm()
to plot the lag_sum GDPPC and w_sum_gdppc maps next to each other for quick comparison:
Code
<- qtm(hunan, "w_sum GDPPC")
w_sum_gdppc tmap_arrange(lag_sum_gdppc, w_sum_gdppc, asp=1, ncol=2)
This is similar to the spatial window average, but instead of averaging the values, it sums them up. This method calculates the total value by adding the value at a specific location to the sum of its neighboring values. It provides a more cumulative measure of spatial influence compared to the average. summarized from: Anselin